cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264990 a(n) = number of occurrences of a most frequent nonzero digit in factorial base representation (A007623) of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Dec 22 2015

Keywords

Examples

			   n  A007623(n)   a(n) [highest number of times any nonzero digit occurs].
   0 =   0           0 (because no nonzero digits present)
   1 =   1           1
   2 =  10           1
   3 =  11           2
   4 =  20           1
   5 =  21           1
   6 = 100           1
   7 = 101           2
   8 = 110           2
   9 = 111           3
  10 = 120           1
  11 = 121           2
  12 = 200           1
  13 = 201           1
  14 = 210           1
  15 = 211           2
  16 = 220           2
  17 = 221           2
  18 = 300           1
and for n=63 we have:
  63 = 2211          2.
		

Crossrefs

Cf. A265349 (positions of terms <= 1), A265350 (positions of term > 1).
Cf. also A266117, A266118.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Max[Tally[Select[s, # > 0 &]][[;;,2]]]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jan 24 2024 *)
  • Python
    from sympy import prime, factorint
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n

Formula

a(0) = 0; for n >= 1, a(n) = max(A257511(n), a(A257684(n))).
Other identities. For all n >= 0:
From Antti Karttunen, Aug 15 2016: (Start)
a(n) = A275811(A225901(n)).
a(n) = A051903(A275735(n)).
(End)

Extensions

Name changed by Antti Karttunen, Aug 15 2016