cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A225901 Write n in factorial base, then replace each nonzero digit d of radix k with k-d.

Original entry on oeis.org

0, 1, 4, 5, 2, 3, 18, 19, 22, 23, 20, 21, 12, 13, 16, 17, 14, 15, 6, 7, 10, 11, 8, 9, 96, 97, 100, 101, 98, 99, 114, 115, 118, 119, 116, 117, 108, 109, 112, 113, 110, 111, 102, 103, 106, 107, 104, 105, 72, 73, 76, 77, 74, 75, 90, 91, 94, 95, 92, 93, 84, 85, 88, 89, 86, 87, 78, 79, 82, 83, 80, 81, 48, 49, 52, 53, 50, 51, 66, 67, 70, 71, 68
Offset: 0

Views

Author

Paul Tek, May 20 2013

Keywords

Comments

Analogous to A004488 or A048647 for the factorial base.
A self-inverse permutation of the natural numbers.
From Antti Karttunen, Aug 16-29 2016: (Start)
Consider the following way to view a factorial base representation of nonnegative integer n. For each nonzero digit d_i present in the factorial base representation of n (where i is the radix = 2.. = one more than 1-based position from the right), we place a pebble to the level (height) d_i at the corresponding column i of the triangular diagram like below, while for any zeros the corresponding columns are left empty:
.
Level
6 o
─ ─
5 . .
─ ─ ─
4 . . .
─ ─ ─ ─
3 . . . .
─ ─ ─ ─ ─
2 . . o . .
─ ─ ─ ─ ─ ─
1 . o . . o o
─ ─ ─ ─ ─ ─ ─
Radix: 7 6 5 4 3 2
Digits: 6 1 2 0 1 1 = A007623(4491)
Instead of levels, we can observe on which "slope" each pebble (nonzero digit) is located at. Formally, the slope of nonzero digit d_i with radix i is (i - d_i). Thus in above example, both the most significant digit (6) and the least significant 1 are on slope 1 (called "maximal slope", because it contains digits that are maximal allowed in those positions), while the second 1 from the right is on slope 2 ("submaximal slope").
This involution (A225901) sends each nonzero digit at level k to the slope k (and vice versa) by flipping such a diagram by the shallow diagonal axis that originates from the bottom right corner. Thus, from above diagram we obtain:
Slope (= digit's radix - digit's value)
1
2 .
3 . .╲
4 . .╲o╲
5 . .╲.╲.╲
6 . .╲.╲o╲.╲
. .╲.╲.╲.╲o╲
o╲.╲.╲.╲.╲o╲
-----------------
1 5 3 0 2 1 = A007623(1397)
and indeed, a(4491) = 1397 and a(1397) = 4491.
Thus this permutation maps between polynomial encodings A275734 & A275735 and all the respective sequences obtained from them, where the former set of sequences are concerned with the "slopes" and the latter set with the "levels" of the factorial base representation. See the Crossrefs section.
Sequences A231716 and A275956 are closed with respect to this sequence, in other words, for all n, a(A231716(n)) is a term of A231716 and a(A275956(n)) is a term of A275956.
(End)

Examples

			a(1000) = a(1*6! + 2*5! + 1*4! + 2*3! + 2*2!) = (7-1)*6! + (6-2)*5! + (5-1)*4! + (4-2)*3! + (3-2)*2! = 4910.
a(1397) = a(1*6! + 5*5! + 3*4! + 0*3! + 2*2! + 1*1!) = (7-1)*6! + (6-5)*5! + (5-3)*4! + (3-2)*2! + (2-1)*1! = 4491.
		

Crossrefs

Cf. A275959 (fixed points), A231716, A275956.
This involution maps between the following sequences related to "levels" and "slopes" (see comments): A275806 <--> A060502, A257511 <--> A260736, A264990 <--> A275811, A275729 <--> A275728, A275948 <--> A275946, A275949 <--> A275947, A275964 <--> A275962, A059590 <--> A276091.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Range[2, 12]]; Table[FromDigits[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #), b] &@ IntegerDigits[n, b], {n, 0, 82}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Range[# + 1] <= n &]; Most@ Rest[a][[All, 1]] /. {} -> {0}]; g[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Range@ Range[0, Length@ w]], Reverse@ Append[w, 0]}]; Table[g[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #)] &@ f@ n, {n, 0, 82}] (* Michael De Vlieger, Aug 29 2016 *)
  • PARI
    a(n)=my(s=0,d,k=2);while(n,d=n%k;n=n\k;if(d,s=s+(k-d)*(k-1)!);k=k+1);return(s)
    
  • Python
    from sympy import factorial as f
    def a(n):
        s=0
        k=2
        while(n):
            d=n%k
            n=(n//k)
            if d: s=s+(k - d)*f(k - 1)
            k+=1
        return s
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017
  • Scheme
    (define (A225901 n) (let loop ((n n) (z 0) (m 2) (f 1)) (cond ((zero? n) z) (else (loop (quotient n m) (if (zero? (modulo n m)) z (+ z (* f (- m (modulo n m))))) (+ 1 m) (* f m))))))
    ;; One implementing the first recurrence, with memoization-macro definec:
    (definec (A225901 n) (if (zero? n) n (+ (A276091 (A275736 n)) (A153880 (A225901 (A257684 n))))))
    ;; Antti Karttunen, Aug 29 2016
    

Formula

From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A276091(A275736(n)) + A153880(a(A257684(n))).
or, for n >= 1, a(n) = A276149(n) + a(A257687(n)).
(End)
Other identities. For n >= 0:
a(n!) = A001563(n).
a(n!-1) = A007489(n-1).
From Antti Karttunen, Aug 16 2016: (Start)
A275734(a(n)) = A275735(n) and vice versa, A275735(a(n)) = A275734(n).
A060130(a(n)) = A060130(n). [The flip preserves the number of nonzero digits.]
A153880(n) = a(A255411(a(n))) and A255411(n) = a(A153880(a(n))). [This involution conjugates between the two fundamental factorial base shifts.]
a(n) = A257684(a(A153880(n))) = A266193(a(A255411(n))). [Follows from above.]
A276011(n) = A273662(a(A273670(n))).
A276012(n) = A273663(a(A256450(n))).
(End)

A275735 Prime-factorization representations of "factorial base level polynomials": a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 2, 4, 4, 8, 6, 12, 3, 6, 6, 12, 9, 18, 5, 10, 10, 20, 15, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 18, 36, 10, 20, 20, 40, 30, 60, 3, 6, 6, 12, 9, 18, 6, 12, 12, 24, 18, 36, 9, 18, 18, 36, 27, 54, 15, 30, 30, 60, 45, 90, 5, 10, 10, 20, 15, 30, 10, 20, 20, 40, 30, 60, 15, 30, 30, 60, 45, 90, 25, 50, 50, 100, 75
Offset: 0

Views

Author

Antti Karttunen, Aug 09 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of times a nonzero digit k occurs in the factorial base representation of n. See the examples.

Examples

			For n = 0 whose factorial base representation (A007623) is also 0, there are no nonzero digits at all, thus there cannot be any prime present in the encoding, and a(0) = 1.
For n = 1 there is just one 1, thus a(1) = prime(1) = 2.
For n = 2 ("10"), there is just one 1-digit, thus a(2) = prime(1) = 2.
For n = 3 ("11") there are two 1-digits, thus a(3) = prime(1)^2 = 4.
For n = 18 ("300") there is just one 3, thus a(18) = prime(3) = 5.
For n = 19 ("301") there is one 1 and one 3, thus a(19) = prime(1)*prime(3) = 2*5 = 10.
For n = 141 ("10311") there are three 1's and one 3, thus a(141) = prime(1)^3 * prime(3) = 2^3 * 5^1 = 40.
		

Crossrefs

Cf. also A275725, A275733, A275734 for other such prime factorization encodings of A060117/A060118-related polynomials, and also A276076.
Differs from A227154 for the first time at n=18, where a(18) = 5, while A227154(18) = 4.

Programs

  • PARI
    A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A275735(n) = A181819(A276076(n)); \\ Antti Karttunen, Apr 03 2022
  • Python
    from sympy import prime
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n

Formula

a(0) = 1; for n >= 1, a(n) = 2^A257511(n) * A003961(a(A257684(n))).
Other identities and observations. For all n >= 0:
a(n) = A275734(A225901(n)).
A001221(a(n)) = A275806(n).
A001222(a(n)) = A060130(n).
A048675(a(n)) = A275729(n).
A051903(a(n)) = A264990(n).
A008683(a(A265349(n))) = -1 or +1 for all n >= 0.
A008683(a(A265350(n))) = 0 for all n >= 1.
From Antti Karttunen, Apr 03 2022: (Start)
A342001(a(n)) = A351954(n).
a(n) = A181819(A276076(n)). (End)

A278236 Filter-sequence for factorial base (digit values): least number with the same prime signature as A276076(n).

Original entry on oeis.org

1, 2, 2, 6, 4, 12, 2, 6, 6, 30, 12, 60, 4, 12, 12, 60, 36, 180, 8, 24, 24, 120, 72, 360, 2, 6, 6, 30, 12, 60, 6, 30, 30, 210, 60, 420, 12, 60, 60, 420, 180, 1260, 24, 120, 120, 840, 360, 2520, 4, 12, 12, 60, 36, 180, 12, 60, 60, 420, 180, 1260, 36, 180, 180, 1260, 900, 6300, 72, 360, 360, 2520, 1800, 12600, 8, 24, 24, 120, 72, 360, 24, 120, 120, 840, 360, 2520
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A276076(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero digits (that may also be > 9) in the factorial base representation of n, but does not depend on their order. Some of these are listed on the last line of the Crossrefs section.
Note that as A275735 is present in that list it means that the sequences matching to its filter-sequence A278235 form a subset of the sequences matching to this sequence. Also, for A275735 there is a stronger condition that for any i, j: a(i) = a(j) <=> A275735(i) = A275735(j), which if true, would imply that there is an injective function f such that f(A275735(n)) = A278236(n), and indeed, this function seems to be A181821.

Crossrefs

Similar sequences: A278222 (base-2 related), A069877 (base-10), A278226 (primorial base), A278225, A278234, A278235 (other variants for factorial base),
Differs from A278226 for the first time at n=24, where a(24)=2, while A278226(24)=16.
Sequences that partition N into same or coarser equivalence classes: A275735 (<=>), A034968, A060130, A227153, A227154, A246359, A257079, A257511, A257679, A257694, A257695, A257696, A264990, A275729, A275806, A275948, A275964, A278235.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; s = ReverseSort[s]; Times @@ (Prime[Range[Length[s]]] ^ s)]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
  • Scheme
    (define (A278236 n) (A046523 (A276076 n)))

Formula

a(n) = A046523(A276076(n)).
a(n) = A181821(A275735(n)). [Empirical formula found with the help of equivalence class matching. Not yet proved.]

A265349 Numbers in whose factorial base representation (A007623) no digit > 0 occurs more than once.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 10, 12, 13, 14, 18, 19, 20, 22, 23, 24, 28, 36, 42, 46, 48, 49, 50, 54, 66, 67, 68, 72, 73, 74, 76, 77, 78, 82, 84, 85, 86, 96, 97, 98, 100, 101, 102, 106, 108, 109, 110, 114, 115, 116, 118, 119, 120, 124, 132, 138, 142, 168, 186, 192, 196, 204, 216, 220, 228, 234, 238, 240, 241, 242, 246, 258, 259, 260
Offset: 0

Views

Author

Antti Karttunen, Dec 22 2015

Keywords

Comments

Zero is a special case in this sequence, thus a(0) = 0, and the indexing of natural numbers >= 1 present starts from a(1) = 1.
After a(0), positions of ones in A264990.

Examples

			23 (in factorial base "321") is present, because none of the digits (which all are nonzero) occurs twice.
48 (in factorial base "2000") is present, because the only nonzero digit, "2", occurs only once.
259 (in factorial base "20301") is present, because none of the nonzero digits occurs more than once.
		

Crossrefs

Cf. A265350 (complement).
Cf. A000142 (a subsequence).
Cf. also A266117.

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Max[Tally[Select[s, # > 0 &]][[;;,2]]] == 1]; q[0] = True; Select[Range[0, 260], q] (* Amiram Eldar, Jan 24 2024 *)

A275811 Number of nonzero digits on a maximally occupied slope of factorial base representation of n: a(n) = A051903(A275734(n)). See comments for the definition.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 10 2016

Keywords

Comments

Digit slopes are called "maximal", "sub-maximal", "sub-sub-maximal", etc. For digit-positions we employ one-based indexing, thus we say that the least significant digit of factorial base expansion of n is in position 1, etc. The maximal digit slope is occupied when there is at least one digit-position k that contains digit k (maximal digit allowed in that position), so that A260736(n) > 0, and n is thus a term of A273670. The sub-maximal digit slope is occupied when there is at least one nonzero digit k in a digit-position k+1. The sub-sub-maximal slope is occupied when there is at least one nonzero digit k in a digit-position k+2, etc. This sequence gives the number of nonzero digits on a slope (of possibly several) for which there exists no other slopes with more nonzero digits. See the examples.
In other words: a(n) gives the number of occurrences of a most common element in the multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present in factorial base representation of n and i_x is that digit's position from the right].
Involution A225901 maps this metric to another metric A264990 which gives the maximal number of equal nonzero digits occurring in factorial base representation (A007623) of n. See also A060502.

Examples

			For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus the "maximal slope" is also the "maximally occupied slope" (as there are no other occupied slopes present), and a(23) = 3.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus here the "maximal slope" is also the "maximally occupied slope" (with 2 nonzero digits present), and a(29) = 2.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus there are three occupied slopes in total, all with just one nonzero digit present, and a(37) = 1.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus here the sub-sub-maximal slope is the "maximally occupied slope" with its two occupiers, and a(55) = 2.
		

Crossrefs

Cf. A275804 (gives the indices of 0 and 1's), A275805 (gives the indices of terms > 1).

Programs

  • Python
    from sympy import prime, factorint
    from operator import mul
    from functools import reduce
    from sympy import factorial as f
    def a051903(n): return 0 if n==1 else max(factorint(n).values())
    def a007623(n, p=2): return n if n

    0 else '0' for i in x])[::-1] return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a275734(n): return 1 if n==0 else a275732(n)*a275734(a257684(n)) def a(n): return 0 if n==0 else a051903(a275734(n)) print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 20 2017

Formula

a(n) = A051903(A275734(n)).
a(n) = A264990(A225901(n)).

Extensions

Signs in comment corrected and clarification added by Antti Karttunen, Aug 16 2016

A265350 Numbers whose factorial base representation (A007623) contains at least one of the nonzero digits occurs more than once (although not necessarily in adjacent positions).

Original entry on oeis.org

3, 7, 8, 9, 11, 15, 16, 17, 21, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 70, 71, 75, 79, 80, 81, 83, 87, 88, 89, 90, 91, 92, 93, 94, 95, 99, 103, 104, 105, 107, 111, 112, 113, 117, 121, 122, 123, 125, 126, 127, 128, 129, 130
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2015

Keywords

Comments

Positions of terms larger than ones in A264990.

Examples

			For n=7 the factorial base representation (A007623) is "101" as 7 = 3!+1! = 6+1. Digit "1" occurs twice in it, thus 7 is included in this sequence.
		

Crossrefs

Cf. A265349 (complement).
Cf. A007489, A046807 (subsequences from 3 onward).

Programs

  • Mathematica
    q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Max[Tally[Select[s, # > 0 &]][[;;,2]]] > 1]; Select[Range[130], q] (* Amiram Eldar, Jan 24 2024 *)

A266117 Lexicographically first injection of positive integers beginning with a(1) such that a(n)*a(n+1) is a term of A265349, i.e., has no multiple occurrences of any nonzero digit when viewed in factorial base (A007623).

Original entry on oeis.org

1, 2, 3, 4, 5, 10, 11, 6, 7, 12, 8, 9, 24, 13, 18, 19, 26, 14, 17, 22, 21, 16, 15, 32, 30, 20, 23, 29, 42, 28, 25, 48, 34, 53, 41, 54, 27, 40, 33, 36, 37, 61, 65, 44, 49, 72, 39, 38, 51, 52, 55, 59, 47, 46, 58, 50, 60, 62, 31, 66, 56, 57, 64, 45, 80, 63, 74, 69, 68, 35, 79, 100, 73, 43, 67, 70, 71, 78, 84, 87, 92, 90, 76, 96, 75
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2015

Keywords

Comments

After a(1) = 1, always choose for a(n+1) the least unused k such that in factorial base representation (A007623), the product a(n)*a(n+1) will not show any of the nonzero digits present twice (or more times), regardless of the positions of the digits.

Examples

			For n = 6, we start searching from the least not yet used number in range a(1) .. a(5) [which is 6, because all the previous terms are fixed] for the first number whose product with a(5) = 5 results a number in A265349.
Multiplying 5 (in factorial base "21") with 6 (in factorial base "100") results 30, which in factorial base is "1100", containing digit "1" twice, thus 6 is disqualified.
Similarly, products 5*7, 5*8 and 5*9 result 35 = "1121", 40 = "1220" and 45 = "1311", where in all cases one of the nonzero digits occur more than once, so 7, 8 and 9 are also all disqualified.
But 5*10 = 50, which has a factorial base representation ("2010") that matches the criterion, thus a(6) = 10.
		

Crossrefs

Left inverse: A266118 (also the right inverse if this sequence is a permutation of the positive integers).
Cf. also A266121, A266191 and A266195 for similar permutations.

A278235 Filter-sequence for factorial base (digit levels): Least number with the same prime signature as A275735(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 4, 4, 8, 6, 12, 2, 6, 6, 12, 4, 12, 2, 6, 6, 12, 6, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 12, 36, 6, 12, 12, 24, 30, 60, 2, 6, 6, 12, 4, 12, 6, 12, 12, 24, 12, 36, 4, 12, 12, 36, 8, 24, 6, 30, 30, 60, 12, 60, 2, 6, 6, 12, 6, 30, 6, 12, 12, 24, 30, 60, 6, 30, 30, 60, 12, 60, 4, 12, 12, 36, 12, 60, 2, 6, 6, 12, 6, 30, 6
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base (A007623) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A275735(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other factorial base related filter-sequences: A278225, A278234, A278236.
Sequences that partition N into same or coarser equivalence classes: A060130, A257696 (?), A264990, A275806, A275948, A275964 (this is a proper a subset of the sequences that match with A278236).

Programs

Formula

a(n) = A046523(A275735(n)).
a(n) = A278234(A225901(n)).
Showing 1-8 of 8 results.