cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A225901 Write n in factorial base, then replace each nonzero digit d of radix k with k-d.

Original entry on oeis.org

0, 1, 4, 5, 2, 3, 18, 19, 22, 23, 20, 21, 12, 13, 16, 17, 14, 15, 6, 7, 10, 11, 8, 9, 96, 97, 100, 101, 98, 99, 114, 115, 118, 119, 116, 117, 108, 109, 112, 113, 110, 111, 102, 103, 106, 107, 104, 105, 72, 73, 76, 77, 74, 75, 90, 91, 94, 95, 92, 93, 84, 85, 88, 89, 86, 87, 78, 79, 82, 83, 80, 81, 48, 49, 52, 53, 50, 51, 66, 67, 70, 71, 68
Offset: 0

Views

Author

Paul Tek, May 20 2013

Keywords

Comments

Analogous to A004488 or A048647 for the factorial base.
A self-inverse permutation of the natural numbers.
From Antti Karttunen, Aug 16-29 2016: (Start)
Consider the following way to view a factorial base representation of nonnegative integer n. For each nonzero digit d_i present in the factorial base representation of n (where i is the radix = 2.. = one more than 1-based position from the right), we place a pebble to the level (height) d_i at the corresponding column i of the triangular diagram like below, while for any zeros the corresponding columns are left empty:
.
Level
6 o
─ ─
5 . .
─ ─ ─
4 . . .
─ ─ ─ ─
3 . . . .
─ ─ ─ ─ ─
2 . . o . .
─ ─ ─ ─ ─ ─
1 . o . . o o
─ ─ ─ ─ ─ ─ ─
Radix: 7 6 5 4 3 2
Digits: 6 1 2 0 1 1 = A007623(4491)
Instead of levels, we can observe on which "slope" each pebble (nonzero digit) is located at. Formally, the slope of nonzero digit d_i with radix i is (i - d_i). Thus in above example, both the most significant digit (6) and the least significant 1 are on slope 1 (called "maximal slope", because it contains digits that are maximal allowed in those positions), while the second 1 from the right is on slope 2 ("submaximal slope").
This involution (A225901) sends each nonzero digit at level k to the slope k (and vice versa) by flipping such a diagram by the shallow diagonal axis that originates from the bottom right corner. Thus, from above diagram we obtain:
Slope (= digit's radix - digit's value)
1
2 .
3 . .╲
4 . .╲o╲
5 . .╲.╲.╲
6 . .╲.╲o╲.╲
. .╲.╲.╲.╲o╲
o╲.╲.╲.╲.╲o╲
-----------------
1 5 3 0 2 1 = A007623(1397)
and indeed, a(4491) = 1397 and a(1397) = 4491.
Thus this permutation maps between polynomial encodings A275734 & A275735 and all the respective sequences obtained from them, where the former set of sequences are concerned with the "slopes" and the latter set with the "levels" of the factorial base representation. See the Crossrefs section.
Sequences A231716 and A275956 are closed with respect to this sequence, in other words, for all n, a(A231716(n)) is a term of A231716 and a(A275956(n)) is a term of A275956.
(End)

Examples

			a(1000) = a(1*6! + 2*5! + 1*4! + 2*3! + 2*2!) = (7-1)*6! + (6-2)*5! + (5-1)*4! + (4-2)*3! + (3-2)*2! = 4910.
a(1397) = a(1*6! + 5*5! + 3*4! + 0*3! + 2*2! + 1*1!) = (7-1)*6! + (6-5)*5! + (5-3)*4! + (3-2)*2! + (2-1)*1! = 4491.
		

Crossrefs

Cf. A275959 (fixed points), A231716, A275956.
This involution maps between the following sequences related to "levels" and "slopes" (see comments): A275806 <--> A060502, A257511 <--> A260736, A264990 <--> A275811, A275729 <--> A275728, A275948 <--> A275946, A275949 <--> A275947, A275964 <--> A275962, A059590 <--> A276091.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Range[2, 12]]; Table[FromDigits[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #), b] &@ IntegerDigits[n, b], {n, 0, 82}] (* Version 10.2, or *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Range[# + 1] <= n &]; Most@ Rest[a][[All, 1]] /. {} -> {0}]; g[w_List] := Total[Times @@@ Transpose@ {Map[Times @@ # &, Range@ Range[0, Length@ w]], Reverse@ Append[w, 0]}]; Table[g[Map[Boole[# > 0] &, #] (Reverse@ Range[2, Length@ # + 1] - #)] &@ f@ n, {n, 0, 82}] (* Michael De Vlieger, Aug 29 2016 *)
  • PARI
    a(n)=my(s=0,d,k=2);while(n,d=n%k;n=n\k;if(d,s=s+(k-d)*(k-1)!);k=k+1);return(s)
    
  • Python
    from sympy import factorial as f
    def a(n):
        s=0
        k=2
        while(n):
            d=n%k
            n=(n//k)
            if d: s=s+(k - d)*f(k - 1)
            k+=1
        return s
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017
  • Scheme
    (define (A225901 n) (let loop ((n n) (z 0) (m 2) (f 1)) (cond ((zero? n) z) (else (loop (quotient n m) (if (zero? (modulo n m)) z (+ z (* f (- m (modulo n m))))) (+ 1 m) (* f m))))))
    ;; One implementing the first recurrence, with memoization-macro definec:
    (definec (A225901 n) (if (zero? n) n (+ (A276091 (A275736 n)) (A153880 (A225901 (A257684 n))))))
    ;; Antti Karttunen, Aug 29 2016
    

Formula

From Antti Karttunen, Aug 29 2016: (Start)
a(0) = 0; for n >= 1, a(n) = A276091(A275736(n)) + A153880(a(A257684(n))).
or, for n >= 1, a(n) = A276149(n) + a(A257687(n)).
(End)
Other identities. For n >= 0:
a(n!) = A001563(n).
a(n!-1) = A007489(n-1).
From Antti Karttunen, Aug 16 2016: (Start)
A275734(a(n)) = A275735(n) and vice versa, A275735(a(n)) = A275734(n).
A060130(a(n)) = A060130(n). [The flip preserves the number of nonzero digits.]
A153880(n) = a(A255411(a(n))) and A255411(n) = a(A153880(a(n))). [This involution conjugates between the two fundamental factorial base shifts.]
a(n) = A257684(a(A153880(n))) = A266193(a(A255411(n))). [Follows from above.]
A276011(n) = A273662(a(A273670(n))).
A276012(n) = A273663(a(A256450(n))).
(End)

A060502 a(n) = number of occupied digit slopes in the factorial base representation of n (see comments for the definition); number of drops in the n-th permutation of list A060117.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 3, 4, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Mar 22 2001

Keywords

Comments

From Antti Karttunen, Aug 11-24 2016: (Start)
a(n) gives the number of occupied "digit slopes" in the factorial base representation of n, or more formally, the number of distinct elements in a multiset [(i_x - d_x) | where d_x ranges over each nonzero digit present in factorial base representation of n and i_x is that digit's position from the right]. Here one-based indexing is used, thus the least significant digit is in position 1. Each value {digit's position} - {digit's value} determines on which slope that particular nonzero digit is. The nonzero digits for which (position - digit) = 0, are said to be on the "maximal slope" (see A260736), those with value 1 on "sub-maximal", etc.
The number of occupied digit slopes translates directly to the number of drops in the n-th permutation as given in the list A060117 because only the largest (and thus leftmost) of all nonzero digits on any particular slope adds a (single) drop to the permutation, when constructed by the unranking algorithm employed in A060117.
The original definition of this sequence is (essentially):
a(n) = the average of digits (where "digits" may eventually obtain also any values > 9) in each siteswap pattern A060498(n) constructed from each permutation in list A060117, which is equal to number of balls used in that pattern.
The equivalence of the old and the new definitions is seen from the following (as kindly pointed by Olivier Gérard in personal mail): For any permutation p of [1..n], Sum(i=1..n) p(i)-i = 0 (whether taken modulo n or not), thus Sum(i=1..n) (p(i)-i modulo n) = Sum(i={set of nondrops}) (p(i)-i) + Sum(i={set of drops}) (n + (p(i)-i)) = 0 + n * #{set of drops}, where drops is the set of those i where p[i] < i and nondrops are those i for which p[i] >= 1.
Involution A225901 maps this metric to another metric A275806 which gives the number of distinct nonzero digits in factorial base representation of n. See also A275811.
A007489 (repunits in this context) gives the positions where a(n) = A084558(n) (the length of factorial base representation of n). These are also the positions of records.
(End)

Examples

			For n=23 ("321" in factorial base representation, A007623), all the digits are maximal for their positions (they occur on the "maximal slope"), thus there is only one distinct digit slope present and a(23)=1. Also, for the 23rd permutation in the ordering A060117, [2341], there is just one drop, as p[4] = 1 < 4.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the maximal slope, while the most significant 1 is on the "sub-sub-sub-maximal", thus there are two occupied slopes in total, and a(29) = 2. In the 29th permutation of A060117, [23154], there are two drops as p[3] = 1 < 3 and p[5] = 4 < 5.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the submaximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus there are three occupied slopes in total, and a(37) = 3. In the 37th permutation of A060117, [51324], there are three drops at indices 2, 4 and 5.
		

Crossrefs

Cf. A007489 (positions of records, the first occurrence of each n).
Cf. A276001, A276002, A276003 (positions where a(n) obtains values 1, 2, 3).

Programs

  • Maple
    # The following program follows the original 2001 interpretation of this sequence:
    A060502 := n -> avg(Perm2SiteSwap3(PermUnrank3R(n)));
    with(group);
    permul := (a, b) -> mulperms(b, a);
    # factorial_base(n) gives the digits of A007623(n) as a list, uncorrupted even when there are digits > 9:
    factorial_base := proc(nn) local n, a, d, j, f; n := nn; if(0 = n) then RETURN([0]); fi; a := []; f := 1; j := 2; while(n > 0) do d := floor(`mod`(n, (j*f))/f); a := [d, op(a)]; n := n - (d*f); f := j*f; j := j+1; od; RETURN(a); end;
    # PermUnrank3R(r) gives the permutation with rank r in list A060117:
    PermUnrank3R := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Raux(n+1, r, []), 'permlist', 1+(((r+2) mod (r+1))*n)); end;
    PermUnrank3Raux := proc(n, r, p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Raux(n-1, r-(s*((n-1)!)), permul(p, [[n, n-s]]))); fi; end;
    Perm2SiteSwap3 := proc(p) local ip,n,i,a; n := nops(p); ip := convert(invperm(convert(p,'disjcyc')),'permlist',n); a := []; for i from 1 to n do if(0 = ((ip[i]-i) mod n)) then a := [op(a),0]; else a := [op(a), n-((ip[i]-i) mod n)]; fi; od; RETURN(a); end;
    avg := a -> (convert(a, `+`)/nops(a));

Formula

From Antti Karttunen, Aug 11-21 2016: (Start)
The following formula reflects the original definition of computing the average, with a few unnecessary steps eliminated:
a(n) = 1/s * Sum_{i=1..s} ((p[i]-i) modulo s), where p is the permutation of rank n as ordered in the list A060117, and s is its size (the number of its elements) computed as s = 1+A084558(n).
a(n) = Sum_{i=1..s} [p[i]
a(n) = 1/s * Sum_{i=1..s} ((i-p[i]) modulo s). [If inverse permutations from list A060118 are used, then we just flip the order of difference that is used in the first formula].
Following formulas do not need intermediate construction of permutation lists:
a(n) = A001221(A275734(n)).
a(n) = A275806(A225901(n)).
a(n) = A000120(A276010(n)).
Other identities and observations. For all n >= 0:
a(n) = A275946(n) + A275947(n).
a(n) = A060500(A060125(n)).
a(n) = A060128(n) + A276004(n).
a(n) = A060129(n) - A060500(n).
a(n) = A084558(n) - A275849(n) = 1 + A084558(n) - A060501(n).
a(A007489(n)) = n. [Particularly, A007489(n) gives the position of the first occurrence of each n.]
A060128(n) <= a(n) <= A060129(n).
a(n!) = 1.
a(A033312(n)) = 1 for all n > 1.
a(A059590(n)) = A000120(n).
a(A060112(n)) = A007895(n).
a(n) = a(A153880(n)) = a(A255411(n)). [The shift-operations do not change the number of distinct slopes.]
a(A275804(n)) = A060130(A275804(n)). [A275804 gives all the positions where this coincides with A060130.]
(End)

Extensions

Entry revised, with a new interpretation and formulas. Maple-code cleaned up. - Antti Karttunen, Aug 11 2016
Another new interpretation added and the original definition moved to the comments - Antti Karttunen, Aug 24 2016

A275734 Prime-factorization representations of "factorial base slope polynomials": a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).

Original entry on oeis.org

1, 2, 3, 6, 2, 4, 5, 10, 15, 30, 10, 20, 3, 6, 9, 18, 6, 12, 2, 4, 6, 12, 4, 8, 7, 14, 21, 42, 14, 28, 35, 70, 105, 210, 70, 140, 21, 42, 63, 126, 42, 84, 14, 28, 42, 84, 28, 56, 5, 10, 15, 30, 10, 20, 25, 50, 75, 150, 50, 100, 15, 30, 45, 90, 30, 60, 10, 20, 30, 60, 20, 40, 3, 6, 9, 18, 6, 12, 15, 30, 45, 90, 30, 60, 9, 18, 27
Offset: 0

Author

Antti Karttunen, Aug 08 2016

Keywords

Comments

These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the number of nonzero digits that occur on the slope (k-1) levels below the "maximal slope" in the factorial base representation of n. See A275811 for the definition of the "digit slopes" in this context.

Examples

			For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus a(23) = prime(1)^3 = 2^3 = 8.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus a(29) = prime(1)^2 * prime(4)^1 = 2*7 = 28.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus a(37) = prime(1) * prime(2) * prime(4) = 2*3*7 = 42.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus a(55) = prime(1)^1 * prime(3)^2 = 2*25 = 50.
		

Crossrefs

Cf. A275811.
Cf. A275804 (indices of squarefree terms), A275805 (of terms not squarefree).
Cf. also A275725, A275733, A275735, A276076 for other such prime factorization encodings of A060117/A060118-related polynomials.

Programs

  • Python
    from operator import mul
    from sympy import prime, factorial as f
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==1 else sum(int(y[i])*f(i + 1) for i in range(len(y))) def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017

Formula

a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).
Other identities and observations. For all n >= 0:
a(n) = A275735(A225901(n)).
a(A007489(n)) = A002110(n).
A001221(a(n)) = A060502(n).
A001222(a(n)) = A060130(n).
A007814(a(n)) = A260736(n).
A051903(a(n)) = A275811(n).
A048675(a(n)) = A275728(n).
A248663(a(n)) = A275808(n).
A056169(a(n)) = A275946(n).
A056170(a(n)) = A275947(n).
A275812(a(n)) = A275962(n).

A275804 Numbers with at most one nonzero digit on each digit slope of the factorial base representation of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 16, 18, 20, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 42, 44, 48, 49, 50, 51, 52, 60, 61, 64, 66, 68, 72, 73, 76, 78, 79, 82, 90, 96, 98, 102, 104, 108, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 132, 133, 136, 138, 140, 144, 145, 146, 147, 148, 150, 151, 152, 153, 154, 156, 157, 160
Offset: 0

Author

Antti Karttunen, Aug 10 2016

Keywords

Comments

Indexing starts from zero, because a(0) = 0 is a special case in this sequence.
Numbers n for which A275947(n) = 0 or equally, for which A275811(n) <= 1.
Numbers n for which A008683(A275734(n)) <> 0, that is, indices of squarefree terms in A275734.
Numbers n for which A060130(n) = A060502(n).
Numbers with at most one nonzero digit on each digit slope of the factorial base representation of n (see A275811 and A060502 for the definition of slopes in this context). More exactly: numbers n in whose factorial base representation (A007623) there does not exist a pair of digit positions i_1 and i_2 with nonzero digits d_1 and d_2, such that (i_1 - d_1) = (i_2 - d_2).

Crossrefs

Complement: A275805.
Indices of zeros in A275947 and A275962.
Intersection with A276005 gives A261220.
Cf. A059590 (a subsequence).

Programs

  • Python
    from operator import mul
    from sympy import prime, factorial as f
    from sympy.ntheory.factor_ import core
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) def ok(n): return 1 if n==0 else core(a(n))==a(n) print([n for n in range(201) if ok(n)]) # Indranil Ghosh, Jun 19 2017

A264990 a(n) = number of occurrences of a most frequent nonzero digit in factorial base representation (A007623) of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2
Offset: 0

Author

Antti Karttunen, Dec 22 2015

Keywords

Examples

			   n  A007623(n)   a(n) [highest number of times any nonzero digit occurs].
   0 =   0           0 (because no nonzero digits present)
   1 =   1           1
   2 =  10           1
   3 =  11           2
   4 =  20           1
   5 =  21           1
   6 = 100           1
   7 = 101           2
   8 = 110           2
   9 = 111           3
  10 = 120           1
  11 = 121           2
  12 = 200           1
  13 = 201           1
  14 = 210           1
  15 = 211           2
  16 = 220           2
  17 = 221           2
  18 = 300           1
and for n=63 we have:
  63 = 2211          2.
		

Crossrefs

Cf. A265349 (positions of terms <= 1), A265350 (positions of term > 1).
Cf. also A266117, A266118.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; Max[Tally[Select[s, # > 0 &]][[;;,2]]]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jan 24 2024 *)
  • Python
    from sympy import prime, factorint
    from operator import mul
    import collections
    def a007623(n, p=2): return n if n

Formula

a(0) = 0; for n >= 1, a(n) = max(A257511(n), a(A257684(n))).
Other identities. For all n >= 0:
From Antti Karttunen, Aug 15 2016: (Start)
a(n) = A275811(A225901(n)).
a(n) = A051903(A275735(n)).
(End)

Extensions

Name changed by Antti Karttunen, Aug 15 2016

A275805 Indices of nonsquarefree terms in A275734; numbers with at least one digit slope (in their factorial base representation) with multiple nonzero digits. (See comments for the exact definition).

Original entry on oeis.org

5, 11, 14, 15, 17, 19, 21, 22, 23, 29, 35, 38, 39, 41, 43, 45, 46, 47, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 67, 69, 70, 71, 74, 75, 77, 80, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 125, 131, 134, 135, 137, 139, 141, 142, 143, 149, 155
Offset: 1

Author

Antti Karttunen, Aug 10 2016

Keywords

Comments

Numbers n for which A008683(A275734(n)) = 0.
Numbers n for which A275811(n) > 1.
Numbers n in whose factorial base representation (A007623) there exists at least one pair of digit positions i_1 and i_2 with nonzero digits d_1 and d_2 such that (i_1 - d_1) = (i_2 - d_2).

Examples

			For n=5, "21" in factorial base (A007623), the pair 2 (in position 2) and 1 (in position 1) satisfies the condition, as (2-2) = (1-1), thus 5 is included.
For n=55, "2101" in factorial base, the pair 2 (in position 4) and 1 (in position 3) satisfies the condition, as (4-2) = (3-1), thus 55 is included.
For n=67, "2301" in factorial base, the pair 3 (in position 3) and 1 (in position 1) satisfies the condition, as (3-3) = (1-1), thus 67 is included in the sequence.
		

Crossrefs

Complement: A275804.
Cf. A275809 (a subsequence apart from its initial 0-term).
Subsequence of A115945.

Programs

  • Python
    from operator import mul
    from sympy import prime, factorial as f, mobius
    from functools import reduce
    def a007623(n, p=2): return n if n

    0 else '0' for i in x)[::-1] return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))]) def a(n): return 1 if n==0 else a275732(n)*a(a257684(n)) print([n for n in range(201) if mobius(a(n))==0]) # Indranil Ghosh, Jun 19 2017

A278234 Filter-sequence for factorial base (digit slopes): Least number with the same prime signature as A275734(n).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 6, 6, 30, 6, 12, 2, 6, 4, 12, 6, 12, 2, 4, 6, 12, 4, 8, 2, 6, 6, 30, 6, 12, 6, 30, 30, 210, 30, 60, 6, 30, 12, 60, 30, 60, 6, 12, 30, 60, 12, 24, 2, 6, 6, 30, 6, 12, 4, 12, 12, 60, 12, 36, 6, 30, 12, 60, 30, 60, 6, 12, 30, 60, 12, 24, 2, 6, 4, 12, 6, 12, 6, 30, 12, 60, 30, 60, 4, 12, 8, 24, 12, 36, 6, 12, 12, 36, 12, 24, 2, 4, 6, 12, 4, 8, 6
Offset: 0

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base (A007623) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A275734(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other filter-sequences related to factorial base: A278225, A278235, A278236.
Sequences that partition N into same or coarser equivalence classes: A060130, A060502, A275811, A275946, A275962.

Programs

Formula

a(n) = A046523(A275734(n)).
a(n) = A278235(A225901(n)).
Showing 1-7 of 7 results.