0, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 3, 4, 3, 3, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1
Offset: 0
For n=23 ("321" in factorial base representation, A007623), all the digits are maximal for their positions (they occur on the "maximal slope"), thus there is only one distinct digit slope present and a(23)=1. Also, for the 23rd permutation in the ordering A060117, [2341], there is just one drop, as p[4] = 1 < 4.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the maximal slope, while the most significant 1 is on the "sub-sub-sub-maximal", thus there are two occupied slopes in total, and a(29) = 2. In the 29th permutation of A060117, [23154], there are two drops as p[3] = 1 < 3 and p[5] = 4 < 5.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the submaximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus there are three occupied slopes in total, and a(37) = 3. In the 37th permutation of A060117, [51324], there are three drops at indices 2, 4 and 5.
A275734
Prime-factorization representations of "factorial base slope polynomials": a(0) = 1; for n >= 1, a(n) = A275732(n) * a(A257684(n)).
Original entry on oeis.org
1, 2, 3, 6, 2, 4, 5, 10, 15, 30, 10, 20, 3, 6, 9, 18, 6, 12, 2, 4, 6, 12, 4, 8, 7, 14, 21, 42, 14, 28, 35, 70, 105, 210, 70, 140, 21, 42, 63, 126, 42, 84, 14, 28, 42, 84, 28, 56, 5, 10, 15, 30, 10, 20, 25, 50, 75, 150, 50, 100, 15, 30, 45, 90, 30, 60, 10, 20, 30, 60, 20, 40, 3, 6, 9, 18, 6, 12, 15, 30, 45, 90, 30, 60, 9, 18, 27
Offset: 0
For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus a(23) = prime(1)^3 = 2^3 = 8.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus a(29) = prime(1)^2 * prime(4)^1 = 2*7 = 28.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus a(37) = prime(1) * prime(2) * prime(4) = 2*3*7 = 42.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus a(55) = prime(1)^1 * prime(3)^2 = 2*25 = 50.
Cf.
A001221,
A001222,
A002110,
A007489,
A007814,
A048675,
A051903,
A056169,
A056170,
A060130,
A060502,
A225901.
Cf.
A275804 (indices of squarefree terms),
A275805 (of terms not squarefree).
-
from operator import mul
from sympy import prime, factorial as f
def a007623(n, p=2): return n if n0 else '0' for i in x)[::-1]
return 0 if n==1 else sum(int(y[i])*f(i + 1) for i in range(len(y)))
def a(n): return 1 if n==0 else a275732(n)*a(a257684(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 19 2017
A261220
Ranks of involutions in permutation orderings A060117 and A060118.
Original entry on oeis.org
0, 1, 2, 4, 6, 7, 12, 16, 18, 20, 24, 25, 26, 28, 48, 49, 60, 66, 72, 76, 78, 90, 96, 98, 102, 108, 120, 121, 122, 124, 126, 127, 132, 136, 138, 140, 240, 241, 242, 244, 288, 289, 312, 316, 336, 338, 360, 361, 372, 378, 384, 385, 432, 450, 456, 468, 480, 484, 486, 498, 504, 508, 528, 546, 576, 582, 600, 602, 606, 612, 624, 626, 648, 660, 672, 678, 720, 721
Offset: 0
Same sequence shown in factorial base:
A260743.
A275947
Number of distinct slopes with multiple nonzero digits in factorial base representation of n: a(n) = A056170(A275734(n)). (See comments for more exact definition).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0
For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). Thus there are two slopes with more than one nonzero digit, and a(525) = 2.
Equally, when we form a multiset of (digit-position - digit-value) differences for all nonzero digits present in "41311", we obtain a multiset [0, 0, 1, 1, 3], in which the distinct elements that occur multiple times are 0 and 1, thus a(525) = 2.
A275962
Total number of nonzero digits that occur on the multiply occupied slopes of the factorial base representation of n: a(n) = A275812(A275734(n)). (See comments for more exact definition).
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 4, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 3, 0, 0, 2, 2, 0, 2, 0, 0, 2, 2, 0, 2, 2, 2, 3, 3, 2, 4, 0, 2, 2, 4, 2, 3, 0, 2, 0, 2, 2, 3, 0, 2, 0, 2, 2, 3, 0, 2, 2, 4, 2, 3, 2, 3, 2, 3, 3, 4, 0
Offset: 0
For n=525, in factorial base "41311", there are three occupied slopes. The maximal slope contains the nonzero digits "3.1", the sub-maximal the digits "4..1.", and the sub-sub-sub-maximal just "1..." (the 1 in the position 4 from right is the sole occupier of its own slope). There are two slopes with more than one nonzero digit, each having two such digits, and thus a(525) = 2+2 = 4.
Equally, when we form a multiset of (digit-position - digit-value) differences for all nonzero digits present in "41311", we obtain a multiset [0, 0, 1, 1, 3], in which the elements that occur multiple times are [0, 0, 1, 1], thus a(525) = 4.
A275811
Number of nonzero digits on a maximally occupied slope of factorial base representation of n: a(n) = A051903(A275734(n)). See comments for the definition.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 1
Offset: 0
For n=23 ("321" in factorial base representation, A007623), all three nonzero digits are maximal for their positions (they all occur on "maximal slope"), thus the "maximal slope" is also the "maximally occupied slope" (as there are no other occupied slopes present), and a(23) = 3.
For n=29 ("1021"), there are three nonzero digits, where both 2 and the rightmost 1 are on the "maximal slope", while the most significant 1 is on the "sub-sub-sub-maximal", thus here the "maximal slope" is also the "maximally occupied slope" (with 2 nonzero digits present), and a(29) = 2.
For n=37 ("1201"), there are three nonzero digits, where the rightmost 1 is on the maximal slope, 2 is on the sub-maximal, and the most significant 1 is on the "sub-sub-sub-maximal", thus there are three occupied slopes in total, all with just one nonzero digit present, and a(37) = 1.
For n=55 ("2101"), the least significant 1 is on the maximal slope, and the digits "21" at the beginning are together on the sub-sub-maximal slope (as they are both two less than the maximal digit values 4 and 3 allowed in those positions), thus here the sub-sub-maximal slope is the "maximally occupied slope" with its two occupiers, and a(55) = 2.
Cf.
A275804 (gives the indices of 0 and 1's),
A275805 (gives the indices of terms > 1).
-
from sympy import prime, factorint
from operator import mul
from functools import reduce
from sympy import factorial as f
def a051903(n): return 0 if n==1 else max(factorint(n).values())
def a007623(n, p=2): return n if n0 else '0' for i in x])[::-1]
return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))])
def a275734(n): return 1 if n==0 else a275732(n)*a275734(a257684(n))
def a(n): return 0 if n==0 else a051903(a275734(n))
print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 20 2017
Signs in comment corrected and clarification added by
Antti Karttunen, Aug 16 2016
A276005
Numbers with hit-free factorial base representations; positions of zeros in A276004 & A276007.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 7, 12, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 48, 49, 54, 55, 60, 66, 67, 72, 74, 76, 78, 84, 86, 88, 90, 92, 94, 96, 97, 98, 100, 101, 102, 103, 108, 110, 112, 114, 115, 116, 118, 119, 120, 121, 122, 124, 125, 126, 127, 132, 134, 136, 138, 139, 140, 142, 143, 240, 241, 242, 244, 245, 264, 265, 266, 268, 269, 288, 289, 312, 314, 316
Offset: 0
n=14 (factorial base "210") is included because 2 occurs in position 3 and 1 occurs in position 2, thus as (3-2) = 1 <> 2, 2 does not "hit" digit 1.
n=15 ("211") is NOT included because 2 occurring in position 3 hits the rightmost 1 in position 1 (as 3-2 = 1), and moreover, also the middle 1 hits the rightmost 1 as 2-1 = 1.
A275805
Indices of nonsquarefree terms in A275734; numbers with at least one digit slope (in their factorial base representation) with multiple nonzero digits. (See comments for the exact definition).
Original entry on oeis.org
5, 11, 14, 15, 17, 19, 21, 22, 23, 29, 35, 38, 39, 41, 43, 45, 46, 47, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 67, 69, 70, 71, 74, 75, 77, 80, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 125, 131, 134, 135, 137, 139, 141, 142, 143, 149, 155
Offset: 1
For n=5, "21" in factorial base (A007623), the pair 2 (in position 2) and 1 (in position 1) satisfies the condition, as (2-2) = (1-1), thus 5 is included.
For n=55, "2101" in factorial base, the pair 2 (in position 4) and 1 (in position 3) satisfies the condition, as (4-2) = (3-1), thus 55 is included.
For n=67, "2301" in factorial base, the pair 3 (in position 3) and 1 (in position 1) satisfies the condition, as (3-3) = (1-1), thus 67 is included in the sequence.
Cf.
A275809 (a subsequence apart from its initial 0-term).
-
from operator import mul
from sympy import prime, factorial as f, mobius
from functools import reduce
def a007623(n, p=2): return n if n0 else '0' for i in x)[::-1]
return 0 if n==1 else sum([int(y[i])*f(i + 1) for i in range(len(y))])
def a(n): return 1 if n==0 else a275732(n)*a(a257684(n))
print([n for n in range(201) if mobius(a(n))==0]) # Indranil Ghosh, Jun 19 2017
Comments