cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A278222 The least number with the same prime signature as A005940(n+1).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 4, 8, 2, 6, 6, 12, 4, 12, 8, 16, 2, 6, 6, 12, 6, 30, 12, 24, 4, 12, 12, 36, 8, 24, 16, 32, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 4, 12, 12, 36, 12, 60, 36, 72, 8, 24, 24, 72, 16, 48, 32, 64, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 6, 30, 30, 60, 30, 210, 60, 120, 12, 60, 60, 180, 24, 120, 48, 96, 4, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Nov 15 2016

Keywords

Comments

This sequence can be used for filtering certain base-2 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A005940(n+1)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Because the Doudna map n -> A005940(1+n) is an isomorphism from "unary-binary encoding of factorization" (see A156552) to the ordinary representation of the prime factorization of n, it follows that the equivalence classes of this sequence match with any such sequence b, where b(n) is computed from the lengths of 1-runs in the binary representation of n and the order of those 1-runs does not matter. Particularly, this holds for any sequence that is obtained as a "Run Length Transform", i.e., where b(n) = Product S(i), for some function S, where i runs through the lengths of runs of 1's in the binary expansion of n. See for example A227349.
However, this sequence itself is not a run length transform of any sequence (which can be seen for example from the fact that A046523 is not multiplicative).
Furthermore, this matches not only with sequences involving products of S(i), but with any sequence obtained with any commutative function applied cumulatively, like e.g., A000120 (binary weight, obtained in this case as Sum identity(i)), and A069010 (number of runs of 1's in binary representation of n, obtained as Sum signum(i)).

Crossrefs

Similar sequences: A278217, A278219 (other base-2 related variants), A069877 (base-10 related), A278226 (primorial base), A278234-A278236 (factorial base), A278243 (Stern polynomials), A278233 (factorization in ring GF(2)[X]), A046523 (factorization in Z).
Cf. also A286622 (rgs-transform of this sequence) and A286162, A286252, A286163, A286240, A286242, A286379, A286464, A286374, A286375, A286376, A286243, A286553 (various other sequences involving this sequence).
Sequences that partition N into same or coarser equivalence classes: too many to list all here (over a hundred). At least every sequence listed under index-entry "Run Length Transforms" is included (e.g., A227349, A246660, A278159), and also sequences like A000120 and A069010, and their combinations like A136277.

Programs

  • Mathematica
    f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; Array[If[# == 1, 1, Times @@ MapIndexed[ Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]]] &@ f[# - 1, 1, 1] &, 99] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    A046523(n)=factorback(primes(#n=vecsort(factor(n)[, 2], , 4)), n)
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); A046523(t) \\ Charles R Greathouse IV, Nov 11 2021
  • Python
    from sympy import prime, factorint
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return a046523(a005940(n + 1)) # Indranil Ghosh, May 05 2017
    
  • Scheme
    (define (A278222 n) (A046523 (A005940 (+ 1 n))))
    

Formula

a(n) = A046523(A005940(1+n)).
a(n) = A124859(A278159(n)).
a(n) = A278219(A006068(n)).

Extensions

Misleading part of the name removed by Antti Karttunen, Apr 07 2022

A278243 Filter-sequence for Stern polynomials: Least number with the same prime signature as A260443(n).

Original entry on oeis.org

1, 2, 2, 6, 2, 12, 6, 30, 2, 60, 12, 120, 6, 180, 30, 210, 2, 420, 60, 1080, 12, 2160, 120, 2520, 6, 2520, 180, 7560, 30, 6300, 210, 2310, 2, 4620, 420, 37800, 60, 90720, 1080, 75600, 12, 226800, 2160, 544320, 120, 453600, 2520, 138600, 6, 138600, 2520, 756000, 180, 2268000, 7560, 831600, 30, 415800, 6300, 2079000, 210, 485100, 2310, 30030, 2, 60060, 4620
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain Stern polynomial (see A125184, A260443) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A260443(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Some of these are listed on the last line ("Sequences that partition N into ...") of Crossrefs section.

Crossrefs

Sequences that partition or seem to partition N into same or coarser equivalence classes: A002487, A126606, A277314, A277315, A277325, A277326, A277700, A277705.
The following are less certain: A007302 (not proved, but the first 10000 terms match), A072453, A110955 (uncertain, but related to A007302), A218799, A218800.
Note that the base-2 related sequences A069010 and A277561 (= 2^A069010(n)) do not match, although at first it seems so, up to for at least 139 initial terms. Also A028928 belongs to a different family.

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]] - Boole[# == 1] &@ a@ n, {n, 0, 66}] (* Michael De Vlieger, May 12 2017 *)
  • Scheme
    (define (A278243 n) (A046523 (A260443 n)))

Formula

a(n) = A046523(A260443(n)).

A278236 Filter-sequence for factorial base (digit values): least number with the same prime signature as A276076(n).

Original entry on oeis.org

1, 2, 2, 6, 4, 12, 2, 6, 6, 30, 12, 60, 4, 12, 12, 60, 36, 180, 8, 24, 24, 120, 72, 360, 2, 6, 6, 30, 12, 60, 6, 30, 30, 210, 60, 420, 12, 60, 60, 420, 180, 1260, 24, 120, 120, 840, 360, 2520, 4, 12, 12, 60, 36, 180, 12, 60, 60, 420, 180, 1260, 36, 180, 180, 1260, 900, 6300, 72, 360, 360, 2520, 1800, 12600, 8, 24, 24, 120, 72, 360, 24, 120, 120, 840, 360, 2520
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A276076(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero digits (that may also be > 9) in the factorial base representation of n, but does not depend on their order. Some of these are listed on the last line of the Crossrefs section.
Note that as A275735 is present in that list it means that the sequences matching to its filter-sequence A278235 form a subset of the sequences matching to this sequence. Also, for A275735 there is a stronger condition that for any i, j: a(i) = a(j) <=> A275735(i) = A275735(j), which if true, would imply that there is an injective function f such that f(A275735(n)) = A278236(n), and indeed, this function seems to be A181821.

Crossrefs

Similar sequences: A278222 (base-2 related), A069877 (base-10), A278226 (primorial base), A278225, A278234, A278235 (other variants for factorial base),
Differs from A278226 for the first time at n=24, where a(24)=2, while A278226(24)=16.
Sequences that partition N into same or coarser equivalence classes: A275735 (<=>), A034968, A060130, A227153, A227154, A246359, A257079, A257511, A257679, A257694, A257695, A257696, A264990, A275729, A275806, A275948, A275964, A278235.

Programs

  • Mathematica
    a[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; s = ReverseSort[s]; Times @@ (Prime[Range[Length[s]]] ^ s)]; Array[a, 100, 0] (* Amiram Eldar, Feb 07 2024 *)
  • Scheme
    (define (A278236 n) (A046523 (A276076 n)))

Formula

a(n) = A046523(A276076(n)).
a(n) = A181821(A275735(n)). [Empirical formula found with the help of equivalence class matching. Not yet proved.]

A278225 Filter-sequence for factorial base (cycles in A060117/A060118-permutations): Least number with the same prime signature as A275725.

Original entry on oeis.org

2, 4, 12, 8, 12, 8, 60, 36, 24, 16, 24, 16, 60, 24, 24, 16, 36, 16, 60, 24, 36, 16, 24, 16, 420, 180, 180, 72, 180, 72, 120, 72, 48, 32, 48, 32, 120, 48, 48, 32, 72, 32, 120, 48, 72, 32, 48, 32, 420, 180, 120, 48, 120, 48, 120, 72, 48, 32, 48, 32, 180, 72, 48, 32, 72, 32, 180, 72, 72, 32, 48, 32, 420, 120, 120, 48, 180, 48, 180, 72, 48, 32, 72, 32, 120, 48, 48
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain sequences related to cycle-structures in finite permutations as ordered by lists A060117 / A060118 (and thus also related to factorial base representation, A007623) because it matches only with any such sequence b that can be computed as b(n) = f(A275725(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other filter-sequences related to factorial base: A278234, A278235, A278236.
Sequences that partition N into same or coarser equivalence classes: A048764, A048765, A060129, A060130, A060131, A084558, A275803, A275851, A257510.

Programs

Formula

a(n) = A046523(A275725(n)).

A278235 Filter-sequence for factorial base (digit levels): Least number with the same prime signature as A275735(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 4, 4, 8, 6, 12, 2, 6, 6, 12, 4, 12, 2, 6, 6, 12, 6, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 12, 36, 6, 12, 12, 24, 30, 60, 2, 6, 6, 12, 4, 12, 6, 12, 12, 24, 12, 36, 4, 12, 12, 36, 8, 24, 6, 30, 30, 60, 12, 60, 2, 6, 6, 12, 6, 30, 6, 12, 12, 24, 30, 60, 6, 30, 30, 60, 12, 60, 4, 12, 12, 36, 12, 60, 2, 6, 6, 12, 6, 30, 6
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base (A007623) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A275735(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other factorial base related filter-sequences: A278225, A278234, A278236.
Sequences that partition N into same or coarser equivalence classes: A060130, A257696 (?), A264990, A275806, A275948, A275964 (this is a proper a subset of the sequences that match with A278236).

Programs

Formula

a(n) = A046523(A275735(n)).
a(n) = A278234(A225901(n)).

A290096 Filter-sequence related to cycle-structure of permutations listed in table A055089: Least number with the same prime signature as A290095.

Original entry on oeis.org

2, 4, 12, 8, 8, 12, 60, 36, 24, 16, 16, 24, 24, 16, 60, 24, 36, 16, 16, 24, 24, 60, 16, 36, 420, 180, 180, 72, 72, 180, 120, 72, 48, 32, 32, 48, 48, 32, 120, 48, 72, 32, 32, 48, 48, 120, 32, 72, 120, 72, 48, 32, 32, 48, 420, 180, 120, 48, 48, 120, 180, 72, 48, 32, 32, 72, 72, 180, 32, 48, 72, 32, 48, 32, 120, 48, 72, 32
Offset: 0

Views

Author

Antti Karttunen, Aug 17 2017

Keywords

Crossrefs

Cf. A046523, A060126, A290095, A290097 (rgs-transform of this sequence).
Other filter-sequences related to factorial base and finite permutations: A278225, A278234, A278235, A278236.

Formula

a(n) = A046523(A290095(n)).
a(n) = A278225(A060126(n)).
Showing 1-6 of 6 results.