cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A278534 a(n) = A278236(A219666(n)).

Original entry on oeis.org

1, 2, 2, 12, 6, 12, 4, 180, 360, 6, 12, 6, 420, 180, 360, 4, 36, 420, 1260, 1800, 24, 120, 360, 1080, 48, 48, 720, 75600, 6, 12, 6, 420, 180, 360, 6, 60, 2310, 4620, 2520, 60, 420, 1260, 2520, 120, 120, 360, 83160, 5040, 720, 75600, 4, 36, 420, 1260, 1800, 60, 420, 1260, 2520, 180, 180, 900, 12600, 360, 12600, 5400, 720, 277200, 529200, 24, 120, 360, 1080, 120, 120
Offset: 0

Views

Author

Antti Karttunen, Nov 30 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A278236(A219666(n)).

A286381 Compound filter: a(n) = P(A055881(n), A278236(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

2, 5, 16, 12, 67, 9, 16, 23, 436, 80, 1771, 18, 67, 80, 1771, 668, 16111, 48, 277, 302, 7141, 2630, 64621, 14, 16, 23, 436, 80, 1771, 31, 436, 467, 21946, 1832, 87991, 94, 1771, 1832, 87991, 16292, 793171, 328, 7141, 7262, 352381, 64982, 3173941, 25, 67, 80, 1771, 668, 16111, 94, 1771, 1832, 87991, 16292, 793171, 706, 16111, 16292, 793171, 405452, 19841851
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A055881(n)+A278236(n))^2) - A055881(n) - 3*A278236(n)).

A278222 The least number with the same prime signature as A005940(n+1).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 4, 8, 2, 6, 6, 12, 4, 12, 8, 16, 2, 6, 6, 12, 6, 30, 12, 24, 4, 12, 12, 36, 8, 24, 16, 32, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 4, 12, 12, 36, 12, 60, 36, 72, 8, 24, 24, 72, 16, 48, 32, 64, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 6, 30, 30, 60, 30, 210, 60, 120, 12, 60, 60, 180, 24, 120, 48, 96, 4, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Nov 15 2016

Keywords

Comments

This sequence can be used for filtering certain base-2 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A005940(n+1)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Because the Doudna map n -> A005940(1+n) is an isomorphism from "unary-binary encoding of factorization" (see A156552) to the ordinary representation of the prime factorization of n, it follows that the equivalence classes of this sequence match with any such sequence b, where b(n) is computed from the lengths of 1-runs in the binary representation of n and the order of those 1-runs does not matter. Particularly, this holds for any sequence that is obtained as a "Run Length Transform", i.e., where b(n) = Product S(i), for some function S, where i runs through the lengths of runs of 1's in the binary expansion of n. See for example A227349.
However, this sequence itself is not a run length transform of any sequence (which can be seen for example from the fact that A046523 is not multiplicative).
Furthermore, this matches not only with sequences involving products of S(i), but with any sequence obtained with any commutative function applied cumulatively, like e.g., A000120 (binary weight, obtained in this case as Sum identity(i)), and A069010 (number of runs of 1's in binary representation of n, obtained as Sum signum(i)).

Crossrefs

Similar sequences: A278217, A278219 (other base-2 related variants), A069877 (base-10 related), A278226 (primorial base), A278234-A278236 (factorial base), A278243 (Stern polynomials), A278233 (factorization in ring GF(2)[X]), A046523 (factorization in Z).
Cf. also A286622 (rgs-transform of this sequence) and A286162, A286252, A286163, A286240, A286242, A286379, A286464, A286374, A286375, A286376, A286243, A286553 (various other sequences involving this sequence).
Sequences that partition N into same or coarser equivalence classes: too many to list all here (over a hundred). At least every sequence listed under index-entry "Run Length Transforms" is included (e.g., A227349, A246660, A278159), and also sequences like A000120 and A069010, and their combinations like A136277.

Programs

  • Mathematica
    f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; Array[If[# == 1, 1, Times @@ MapIndexed[ Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]]] &@ f[# - 1, 1, 1] &, 99] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    A046523(n)=factorback(primes(#n=vecsort(factor(n)[, 2], , 4)), n)
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); A046523(t) \\ Charles R Greathouse IV, Nov 11 2021
  • Python
    from sympy import prime, factorint
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return a046523(a005940(n + 1)) # Indranil Ghosh, May 05 2017
    
  • Scheme
    (define (A278222 n) (A046523 (A005940 (+ 1 n))))
    

Formula

a(n) = A046523(A005940(1+n)).
a(n) = A124859(A278159(n)).
a(n) = A278219(A006068(n)).

Extensions

Misleading part of the name removed by Antti Karttunen, Apr 07 2022

A278226 Filter-sequence for primorial base: least number with the same prime signature as A276086(n).

Original entry on oeis.org

1, 2, 2, 6, 4, 12, 2, 6, 6, 30, 12, 60, 4, 12, 12, 60, 36, 180, 8, 24, 24, 120, 72, 360, 16, 48, 48, 240, 144, 720, 2, 6, 6, 30, 12, 60, 6, 30, 30, 210, 60, 420, 12, 60, 60, 420, 180, 1260, 24, 120, 120, 840, 360, 2520, 48, 240, 240, 1680, 720, 5040, 4, 12, 12, 60, 36, 180, 12, 60, 60, 420, 180, 1260, 36, 180, 180, 1260, 900, 6300, 72, 360, 360, 2520, 1800
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain primorial base related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A276086(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero digits (that may also be > 9) in the primorial base representation of n, but does not depend on their order. Some of these are listed on the last line of the Crossrefs section.

Crossrefs

Cf. also A278243.
Similar sequences: A278222 (base-2 related), A069877 (base-10), A278236 (factorial base).
Differs from A278236 for the first time at n=24, where a(24)=16, while A278236(24)=2.
Sequences that partition N into same or coarser equivalence classes: A267263, A276150.

Programs

Formula

a(n) = A046523(A276086(n)).

A278233 Filter-sequence for GF(2)[X]-factorization: sequence that gives the least natural number with the same prime signature that (0, 1)-polynomial encoded in the binary expansion of n has when it is factored over GF(2).

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 2, 8, 6, 12, 2, 12, 2, 6, 8, 16, 16, 30, 2, 36, 4, 6, 6, 24, 2, 6, 12, 12, 6, 24, 2, 32, 6, 48, 6, 60, 2, 6, 12, 72, 2, 12, 6, 12, 24, 30, 2, 48, 6, 6, 32, 12, 6, 60, 2, 24, 12, 30, 2, 72, 2, 6, 12, 64, 36, 30, 2, 144, 4, 30, 6, 120, 2, 6, 24, 12, 6, 60, 6, 144, 4, 6, 30, 36, 64, 30, 2, 24, 6, 120, 2, 60, 6, 6, 12, 96, 2, 30, 12, 12, 30, 96, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

a(n) = the least number with the same prime signature as A091203(n).
This sequence works as an A046523-analog in the polynomial ring GF(2)[X] and can be used as a filter which matches with (and thus detects) any sequence in the database where a(n) depends only on the exponents of irreducible factors when the polynomial corresponding to n (via base-2 encoding) is factored over GF(2). These sequences are listed in the Crossrefs section, "Sequences that partition N into ...".
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Examples

			3 is "11" in binary, encodes polynomial x + 1, and 7 is "111" in binary, encodes polynomial x^2 + x + 1, both which are irreducible over GF(2). We can multiply their codes with carryless multiplication A048720 as A048720(3,7) = 9, A048720(9,3) = 27, A048720(9,7) = 63. Now a(27) = a(63) because the exponents occurring in both codes 27 and 63 are one 1 and two 2's, and their order is not significant when computing prime signature. Moreover a(27) = a(63) = 12 because that is the least number with a prime signature (1,2) in the more familiar domain of natural numbers.
a(25) = 2, because 25 is "11001" in binary, encoding polynomial x^4 + x^3 + 1, which is irreducible in the ring GF(2)[X], i.e., 25 is in A014580, whose initial term is 2.
		

Crossrefs

Cf. A014580 (gives the positions of 2's), A048720, A057889, A091203, A091205, A193231, A235042, A278231, A278238, A278239.
Similar filtering sequences: A046523, A278222, A278226, A278236, A278243.
Sequences that partition N into same or coarser equivalence classes: A091220, A091221, A091222, A106493, A106494.
Cf. also A304529, A304751, A305788 (rgs-transform), A305789.

Programs

Formula

a(n) = A046523(A091203(n)) = A046523(A091205(n)) = A046523(A235042(n)). [Because of the "sorting" essentially performed by A046523, any map from GF(2)[X] to Z can be used, as long as it is fully (cross-)multiplicative and preserves also the exponents intact.]
Other identities. For all n >= 1:
a(A014580(n)) = 2.
a(n) = a(A057889(n)) = a(A193231(n)).
a(A000695(n)) = A278238(n).
a(A277699(n)) = A278239(n).

A278243 Filter-sequence for Stern polynomials: Least number with the same prime signature as A260443(n).

Original entry on oeis.org

1, 2, 2, 6, 2, 12, 6, 30, 2, 60, 12, 120, 6, 180, 30, 210, 2, 420, 60, 1080, 12, 2160, 120, 2520, 6, 2520, 180, 7560, 30, 6300, 210, 2310, 2, 4620, 420, 37800, 60, 90720, 1080, 75600, 12, 226800, 2160, 544320, 120, 453600, 2520, 138600, 6, 138600, 2520, 756000, 180, 2268000, 7560, 831600, 30, 415800, 6300, 2079000, 210, 485100, 2310, 30030, 2, 60060, 4620
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain Stern polynomial (see A125184, A260443) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A260443(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Some of these are listed on the last line ("Sequences that partition N into ...") of Crossrefs section.

Crossrefs

Sequences that partition or seem to partition N into same or coarser equivalence classes: A002487, A126606, A277314, A277315, A277325, A277326, A277700, A277705.
The following are less certain: A007302 (not proved, but the first 10000 terms match), A072453, A110955 (uncertain, but related to A007302), A218799, A218800.
Note that the base-2 related sequences A069010 and A277561 (= 2^A069010(n)) do not match, although at first it seems so, up to for at least 139 initial terms. Also A028928 belongs to a different family.

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]] - Boole[# == 1] &@ a@ n, {n, 0, 66}] (* Michael De Vlieger, May 12 2017 *)
  • Scheme
    (define (A278243 n) (A046523 (A260443 n)))

Formula

a(n) = A046523(A260443(n)).

A069877 Smallest number with a prime signature whose indices are the decimal digits of n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 2, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 4, 12, 36, 72, 144, 288, 576, 1152, 2304, 4608, 8, 24, 72, 216, 432, 864, 1728, 3456, 6912, 13824, 16, 48, 144, 432, 1296, 2592, 5184, 10368, 20736, 41472, 32, 96, 288, 864, 2592, 7776, 15552, 31104, 62208, 124416, 64, 192, 576, 1728, 5184, 15552, 46656, 93312, 186624, 373248, 128
Offset: 0

Views

Author

Amarnath Murthy, Apr 25 2002

Keywords

Comments

From Antti Karttunen, Nov 17 2016: (Start)
This is a filter-sequence for decimal base: a(n) = the least number with the same prime signature as A054842(n).
This sequence can be used for filtering certain base-10 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A054842(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Any such sequence should match where the result is computed from the nonzero decimal digits of n, but does not depend on their order. These include for example, A007953 (digital sum and any of its variants), A010888 (digital root of n) and A051801 (product of the nonzero digits of n). As of Nov 11 2016, there were a couple of hundred such sequences that seemed to match with this one. These are given at the "List of sequences whose equivalence classes ..." link.
(End)

Examples

			a(12) = 2^2 * 3^1 = 12. a(231) = 2^3 * 3^2 * 5^1 = 360.
		

Crossrefs

Cf. A278222, A278226, A278236 for similar filter sequences constructed for other bases.
Sequences that partition N into same or coarser equivalence classes: too numerous to list all here, but at least A007953, A010888, A051801 are included. See the separate list given in links.

Formula

a(n) = A046523(A054842(n)). - Antti Karttunen, Nov 16 2016

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 05 2002
a(0)=1 prepended and more terms added by Antti Karttunen, Nov 16 2016

A278234 Filter-sequence for factorial base (digit slopes): Least number with the same prime signature as A275734(n).

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 6, 6, 30, 6, 12, 2, 6, 4, 12, 6, 12, 2, 4, 6, 12, 4, 8, 2, 6, 6, 30, 6, 12, 6, 30, 30, 210, 30, 60, 6, 30, 12, 60, 30, 60, 6, 12, 30, 60, 12, 24, 2, 6, 6, 30, 6, 12, 4, 12, 12, 60, 12, 36, 6, 30, 12, 60, 30, 60, 6, 12, 30, 60, 12, 24, 2, 6, 4, 12, 6, 12, 6, 30, 12, 60, 30, 60, 4, 12, 8, 24, 12, 36, 6, 12, 12, 36, 12, 24, 2, 4, 6, 12, 4, 8, 6
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base (A007623) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A275734(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other filter-sequences related to factorial base: A278225, A278235, A278236.
Sequences that partition N into same or coarser equivalence classes: A060130, A060502, A275811, A275946, A275962.

Programs

Formula

a(n) = A046523(A275734(n)).
a(n) = A278235(A225901(n)).

A278225 Filter-sequence for factorial base (cycles in A060117/A060118-permutations): Least number with the same prime signature as A275725.

Original entry on oeis.org

2, 4, 12, 8, 12, 8, 60, 36, 24, 16, 24, 16, 60, 24, 24, 16, 36, 16, 60, 24, 36, 16, 24, 16, 420, 180, 180, 72, 180, 72, 120, 72, 48, 32, 48, 32, 120, 48, 48, 32, 72, 32, 120, 48, 72, 32, 48, 32, 420, 180, 120, 48, 120, 48, 120, 72, 48, 32, 48, 32, 180, 72, 48, 32, 72, 32, 180, 72, 72, 32, 48, 32, 420, 120, 120, 48, 180, 48, 180, 72, 48, 32, 72, 32, 120, 48, 48
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain sequences related to cycle-structures in finite permutations as ordered by lists A060117 / A060118 (and thus also related to factorial base representation, A007623) because it matches only with any such sequence b that can be computed as b(n) = f(A275725(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other filter-sequences related to factorial base: A278234, A278235, A278236.
Sequences that partition N into same or coarser equivalence classes: A048764, A048765, A060129, A060130, A060131, A084558, A275803, A275851, A257510.

Programs

Formula

a(n) = A046523(A275725(n)).

A278235 Filter-sequence for factorial base (digit levels): Least number with the same prime signature as A275735(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 4, 4, 8, 6, 12, 2, 6, 6, 12, 4, 12, 2, 6, 6, 12, 6, 30, 2, 4, 4, 8, 6, 12, 4, 8, 8, 16, 12, 24, 6, 12, 12, 24, 12, 36, 6, 12, 12, 24, 30, 60, 2, 6, 6, 12, 4, 12, 6, 12, 12, 24, 12, 36, 4, 12, 12, 36, 8, 24, 6, 30, 30, 60, 12, 60, 2, 6, 6, 12, 6, 30, 6, 12, 12, 24, 30, 60, 6, 30, 30, 60, 12, 60, 4, 12, 12, 36, 12, 60, 2, 6, 6, 12, 6, 30, 6
Offset: 0

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used for filtering certain factorial base (A007623) related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A275735(n)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Crossrefs

Other factorial base related filter-sequences: A278225, A278234, A278236.
Sequences that partition N into same or coarser equivalence classes: A060130, A257696 (?), A264990, A275806, A275948, A275964 (this is a proper a subset of the sequences that match with A278236).

Programs

Formula

a(n) = A046523(A275735(n)).
a(n) = A278234(A225901(n)).
Showing 1-10 of 12 results. Next