1, 2, 2, 4, 4, 6, 2, 8, 6, 12, 2, 12, 2, 6, 8, 16, 16, 30, 2, 36, 4, 6, 6, 24, 2, 6, 12, 12, 6, 24, 2, 32, 6, 48, 6, 60, 2, 6, 12, 72, 2, 12, 6, 12, 24, 30, 2, 48, 6, 6, 32, 12, 6, 60, 2, 24, 12, 30, 2, 72, 2, 6, 12, 64, 36, 30, 2, 144, 4, 30, 6, 120, 2, 6, 24, 12, 6, 60, 6, 144, 4, 6, 30, 36, 64, 30, 2, 24, 6, 120, 2, 60, 6, 6, 12, 96, 2, 30, 12, 12, 30, 96, 2
Offset: 1
3 is "11" in binary, encodes polynomial x + 1, and 7 is "111" in binary, encodes polynomial x^2 + x + 1, both which are irreducible over GF(2). We can multiply their codes with carryless multiplication A048720 as A048720(3,7) = 9, A048720(9,3) = 27, A048720(9,7) = 63. Now a(27) = a(63) because the exponents occurring in both codes 27 and 63 are one 1 and two 2's, and their order is not significant when computing prime signature. Moreover a(27) = a(63) = 12 because that is the least number with a prime signature (1,2) in the more familiar domain of natural numbers.
a(25) = 2, because 25 is "11001" in binary, encoding polynomial x^4 + x^3 + 1, which is irreducible in the ring GF(2)[X], i.e., 25 is in A014580, whose initial term is 2.
Comments