A265062 Coordination sequence for (2,4,7) tiling of hyperbolic plane.
1, 3, 5, 8, 12, 17, 25, 36, 50, 70, 98, 137, 193, 271, 379, 531, 744, 1042, 1461, 2048, 2869, 4020, 5633, 7893, 11061, 15500, 21719, 30434, 42646, 59758, 83738, 117340, 164424, 230402, 322855, 452406, 633943, 888325, 1244781, 1744272, 2444193, 3424970, 4799303, 6725112, 9423686, 13205113, 18503907, 25928939, 36333403
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,1,1,1,0,0,-1).
Crossrefs
Coordination sequences for triangular tilings of hyperbolic space: A001630, A007283, A054886, A078042, A096231, A163876, A179070, A265057, A265058, A265059, A265060, A265061, A265062, A265063, A265064, A265065, A265066, A265067, A265068, A265069, A265070, A265071, A265072, A265073, A265074, A265075, A265076, A265077.
Programs
-
Mathematica
CoefficientList[Series[(x + 1)^2 (x^2 + 1) (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(x^10 - x^7 - x^6 - x^5 - x^4 - x^3 + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 31 2015 *) LinearRecurrence[{0,0,1,1,1,1,1,0,0,-1},{1,3,5,8,12,17,25,36,50,70,98},50] (* Harvey P. Dale, May 17 2023 *)
-
PARI
Vec((x+1)^2*(x^2+1)*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^10-x^7-x^6-x^5-x^4-x^3+1) + O(x^50)) \\ Michel Marcus, Dec 31 2015
Formula
G.f.: (x+1)^2*(x^2+1)*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^10-x^7-x^6-x^5-x^4-x^3+1).