cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265225 Total number of ON (black) cells after n iterations of the "Rule 54" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 4, 6, 12, 15, 24, 28, 40, 45, 60, 66, 84, 91, 112, 120, 144, 153, 180, 190, 220, 231, 264, 276, 312, 325, 364, 378, 420, 435, 480, 496, 544, 561, 612, 630, 684, 703, 760, 780, 840, 861, 924, 946, 1012, 1035, 1104, 1128, 1200, 1225, 1300, 1326, 1404, 1431
Offset: 0

Views

Author

Robert Price, Dec 05 2015

Keywords

Comments

Take the first 2n positive integers and choose n of them such that their sum: a) is divisible by n, and b) is minimal. It seems their sum equals a(n). - Ivan N. Ianakiev, Feb 16 2019

Examples

			From _Michael De Vlieger_, Dec 14 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row:
                        1                          =  1 ->  1
                      1 1 1                        =  3 ->  4
                    1 . . . 1                      =  2 ->  6
                  1 1 1 . 1 1 1                    =  6 -> 12
                1 . . . 1 . . . 1                  =  3 -> 15
              1 1 1 . 1 1 1 . 1 1 1                =  9 -> 24
            1 . . . 1 . . . 1 . . . 1              =  4 -> 28
          1 1 1 . 1 1 1 . 1 1 1 . 1 1 1            = 12 -> 40
        1 . . . 1 . . . 1 . . . 1 . . . 1          =  5 -> 45
      1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1        = 15 -> 60
    1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1      =  6 -> 66
  1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1    = 18 -> 84
1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1  =  7 -> 91
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Maple
    A265225:=n->1/4*(n+1)*(2*n-(-1)^n+5): seq(A265225(n), n=0..60); # Wesley Ivan Hurt, Dec 25 2016
  • Mathematica
    rule = 54; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule,{{1},0},rows-1,{All,All}][[k]],{rows-k+1,rows+k-1}],{k,1,rows}][[k]]],{k,1,rows}],k]],{k,1,rows}]
    Accumulate[Total /@ CellularAutomaton[54, {{1}, 0}, 52]]

Formula

Conjectures from Colin Barker, Dec 08 2015 and Apr 20 2019: (Start)
a(n) = (n+1)*(2*n -(-1)^n +5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
G.f.: (1+3*x) / ((1-x)^3*(1+x)^2).
(End)
a(n) = n + 1 + (n+1) * floor((n+1)/2), conjectured. - Wesley Ivan Hurt, Dec 25 2016
a(n) = A093353(n) + n + 1, conjectured. - Matej Veselovac, Jan 21 2020