A265225 Total number of ON (black) cells after n iterations of the "Rule 54" elementary cellular automaton starting with a single ON (black) cell.
1, 4, 6, 12, 15, 24, 28, 40, 45, 60, 66, 84, 91, 112, 120, 144, 153, 180, 190, 220, 231, 264, 276, 312, 325, 364, 378, 420, 435, 480, 496, 544, 561, 612, 630, 684, 703, 760, 780, 840, 861, 924, 946, 1012, 1035, 1104, 1128, 1200, 1225, 1300, 1326, 1404, 1431
Offset: 0
Examples
From _Michael De Vlieger_, Dec 14 2015: (Start) First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row: 1 = 1 -> 1 1 1 1 = 3 -> 4 1 . . . 1 = 2 -> 6 1 1 1 . 1 1 1 = 6 -> 12 1 . . . 1 . . . 1 = 3 -> 15 1 1 1 . 1 1 1 . 1 1 1 = 9 -> 24 1 . . . 1 . . . 1 . . . 1 = 4 -> 28 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 12 -> 40 1 . . . 1 . . . 1 . . . 1 . . . 1 = 5 -> 45 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 15 -> 60 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 = 6 -> 66 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 18 -> 84 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 = 7 -> 91 (End)
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..999
- Emanuele Munarini, Topological indices for the antiregular graphs, Le Mathematiche (2021) Vol. 76, No. 1, see p. 301.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Maple
A265225:=n->1/4*(n+1)*(2*n-(-1)^n+5): seq(A265225(n), n=0..60); # Wesley Ivan Hurt, Dec 25 2016
-
Mathematica
rule = 54; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule,{{1},0},rows-1,{All,All}][[k]],{rows-k+1,rows+k-1}],{k,1,rows}][[k]]],{k,1,rows}],k]],{k,1,rows}] Accumulate[Total /@ CellularAutomaton[54, {{1}, 0}, 52]]
Formula
Conjectures from Colin Barker, Dec 08 2015 and Apr 20 2019: (Start)
a(n) = (n+1)*(2*n -(-1)^n +5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
G.f.: (1+3*x) / ((1-x)^3*(1+x)^2).
(End)
a(n) = n + 1 + (n+1) * floor((n+1)/2), conjectured. - Wesley Ivan Hurt, Dec 25 2016
a(n) = A093353(n) + n + 1, conjectured. - Matej Veselovac, Jan 21 2020
Comments