A265672 a(n) = n + floor((n+1)/7)*(-1)^((n+1) mod 7).
0, 1, 2, 3, 4, 5, 7, 6, 9, 8, 11, 10, 13, 15, 12, 17, 14, 19, 16, 21, 23, 18, 25, 20, 27, 22, 29, 31, 24, 33, 26, 35, 28, 37, 39, 30, 41, 32, 43, 34, 45, 47, 36, 49, 38, 51, 40, 53, 55, 42, 57, 44, 59, 46, 61, 63, 48, 65, 50, 67, 52, 69, 71, 54, 73, 56, 75
Offset: 0
Examples
------------------------------------------------------------------------- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ... + + + + + + + + + + + + + + + + + + + 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, 2, -2, 2, -2, 2, -2, ... ------------------------------------------------------------------------- 0, 1, 2, 3, 4, 5, 7, 6, 9, 8, 11, 10, 13, 15, 12, 17, 14, 19, 16, ... -------------------------------------------------------------------------
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2,0,0,0,0,0,0,-1).
Programs
-
Magma
[n+Floor((n+1)/7)*(-1)^((n+1) mod 7): n in [0..80]]; // Bruno Berselli, Dec 26 2015
-
Maple
A265672:=n->n + floor((n+1)/7)*(-1)^((n+1) mod 7): seq(A265672(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
-
Mathematica
Table[n + Floor[(n + 1)/7] (-1)^Mod[n + 1, 7], {n, 0, 80}] (* Bruno Berselli, Dec 22 2015 *)
-
PARI
concat(0, Vec(x*(1 +x^2)*(1 +2*x +2*x^2 +2*x^3 +3*x^4 +5*x^5 +3*x^6 +2*x^7 +x^8 +3*x^9 +x^10) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2) + O(x^100))) \\ Colin Barker, Dec 13 2015
Formula
a(n) = a(n-7) + (-1)^((n+1) mod 7) + 7 for n>6.
From Colin Barker, Dec 13 2015: (Start)
a(n) = 2*a(n-7) - a(n-14) for n>13.
G.f.: x*(1 +x^2)*(1 +2*x +2*x^2 +2*x^3 +3*x^4 +5*x^5 +3*x^6 +2*x^7 +x^8 +3*x^9 +x^10) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2). (End)
Extensions
Edited by Bruno Berselli, Dec 22 2015
Comments