A265237 Carmichael numbers (A002997) that are the sum of two squares.
1105, 2465, 10585, 29341, 46657, 115921, 162401, 252601, 278545, 294409, 314821, 410041, 488881, 530881, 552721, 1461241, 1909001, 2433601, 3224065, 3581761, 4335241, 5148001, 5310721, 5444489, 5632705, 6054985, 6189121, 7207201, 7519441, 8134561, 8355841
Offset: 1
Keywords
Examples
1105 is a term because 1105 = 23^2 + 24^2. 2465 is a term because 2465 = 41^2 + 28^2. 10585 is a term because 10585 = 37^2 + 96^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- G. Tarry, I. Franel, A. Korselt, and G. Vacca. Problème chinois. L'intermédiaire des mathématiciens 6 (1899), pp. 142-144.
- Eric Weisstein's World of Mathematics, Carmichael Number
- Index entries for sequences related to Carmichael numbers
Programs
-
Mathematica
t = Cases[Range[1, 10^7, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Select[t, SquaresR[2, #] > 0 &] (* Michael De Vlieger, Dec 06 2015, after Artur Jasinski at A002997 *)
-
PARI
is(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1 is_c(n)={my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1} for(n=1, 1e7, if(is(n)&&is_c(n), print1(n, ", ")))
Comments