cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265250 Number of partitions of n having no parts strictly between the smallest and the largest part (n>=1).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 13, 17, 20, 26, 29, 35, 39, 48, 48, 60, 61, 74, 73, 87, 86, 106, 99, 120, 112, 140, 130, 155, 143, 176, 159, 194, 180, 216, 186, 240, 209, 258, 234, 274, 243, 308, 261, 325, 289, 348, 297, 383, 314, 392, 356, 423, 355, 460, 372, 468, 422
Offset: 1

Views

Author

Emeric Deutsch, Dec 25 2015

Keywords

Examples

			a(3) = 3 because we have [3], [1,2], [1,1,1] (all partitions of 3).
a(6) = 10 because we have all A000041(6) = 11 partitions of 6 except [1,2,3].
a(7) = 13 because we have all A000041(7) = 15 partitions of 7 except [1,2,4] and [1,1,2,3].
		

Crossrefs

Programs

  • Maple
    g := add(x^i/(1-x^i), i = 1 .. 80)+add(add(x^(i+j)/((1-x^i)*(1-x^j)), j = i+1..80),i=1..80): gser := series(g,x=0,60): seq(coeff(gser,x,n),n=1..50);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
          `if`(t=1, `if`(irem(n, i)=0, 1, 0)+b(n, i-1, t),
           add(b(n-i*j, i-1, t-`if`(j=0, 0, 1)), j=0..n/i))))
        end:
    a:= n-> b(n$2, 2):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 01 2016
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, If[t == 1, If[Mod[n, i] == 0, 1, 0] + b[n, i - 1, t], Sum[b[n - i*j, i - 1, t - If[j == 0, 0, 1]], {j, 0, n/i}]]]]; a[n_] := b[n, n, 2]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

a(n) = A265249(n,0).
G.f.: G(x) = Sum_{i>=1} x^i/(1-x^i) + Sum_{i>=1} Sum_{j>=i+1} x^(i+j)/ ((1-x^i)*(1-x^j)).
a(n) = A116608(n,1) + A116608(n,2) = A000005(n) + A002133(n). - Seiichi Manyama, Sep 14 2023