cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 29, 12, 13, 38, 33, 32, 35, 18, 7, 20, 15, 14, 17, 24, 23, 26, 27, 28, 83, 30, 31, 92, 87, 86, 89, 36, 37, 110, 39, 40, 119, 114, 113, 116, 99, 34, 101, 96, 95, 98, 105, 104, 107, 54, 19, 56, 21, 22, 65, 60, 59, 62, 45, 16, 47, 42, 41, 44, 51, 50, 53, 72, 25, 74, 69, 68, 71, 78, 77, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(n)) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265351 n) (A263272 (A263273 n)))
    

Formula

a(n) = A263272(A263273(n)).
As a composition of other related permutations:
a(n) = A264974(A265367(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
a(n) = A265342(n)/2.

A265354 Permutation of nonnegative integers: a(n) = A263273(A264985(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 7, 5, 19, 8, 13, 27, 18, 28, 36, 21, 11, 57, 24, 37, 30, 15, 31, 39, 22, 16, 64, 23, 14, 55, 20, 46, 58, 25, 17, 73, 26, 40, 81, 54, 82, 108, 63, 29, 171, 72, 109, 90, 45, 85, 117, 66, 34, 192, 69, 38, 165, 60, 100, 174, 75, 35, 219, 78, 118, 84, 33, 91, 93, 48, 32, 138, 51, 112, 111, 42, 94, 120, 67
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its odd bisection.

Crossrefs

Inverse: A265353.
Cf. also A265352, A265355, A265356.

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a264985(n): return (a263273(2*n + 1) - 1)/2
    def a(n): return a263273(a264985(n)) # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A265354 n) (A263273 (A264985 n)))
    

Formula

a(n) = A263273(A264985(n)).

A265355 Permutation of nonnegative integers: a(n) = A263272(A264985(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 5, 11, 7, 8, 13, 27, 18, 28, 36, 15, 29, 21, 24, 37, 30, 33, 31, 39, 14, 32, 16, 17, 38, 19, 20, 34, 22, 23, 35, 25, 26, 40, 81, 54, 82, 108, 45, 83, 63, 72, 109, 90, 99, 85, 117, 42, 86, 48, 51, 110, 57, 60, 88, 66, 69, 89, 75, 78, 118, 84, 87, 91, 93, 96, 92, 102, 105, 112, 111, 114, 94, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of permutations obtained from the bisections of A263273.

Crossrefs

Programs

Formula

a(n) = A263272(A264985(n)).

A265356 Permutation of nonnegative integers: a(n) = A264985(A263272(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 11, 12, 5, 7, 10, 8, 13, 27, 18, 29, 30, 15, 32, 33, 20, 35, 36, 21, 38, 39, 14, 16, 19, 23, 25, 28, 24, 34, 37, 17, 22, 31, 26, 40, 81, 54, 83, 84, 45, 86, 87, 56, 89, 90, 57, 92, 93, 42, 95, 96, 59, 98, 99, 60, 101, 102, 47, 104, 105, 62, 107, 108, 63, 110, 111, 48, 113, 114, 65, 116, 117, 66, 119, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of permutations obtained from the bisections of A263273.

Crossrefs

Programs

Formula

a(n) = A264985(A263272(n)).

A265331 One-based row index to A265345.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Crossrefs

One more than A265330.
Cf. A265911 (corresponding other index).
Differs from A001511 for the first time at n=32, where a(32) = 7, while A001511(32) = 6.

Programs

Formula

a(n) = A001511(A263273(n)).
a(2n+1) = 1, a(2n) = 1 + a(A265352(n)).

A265904 Self-inverse permutation of nonnegative integers: a(n) = A263272(A263273(A263272(n))).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 29, 8, 9, 10, 5, 12, 13, 38, 33, 92, 17, 18, 83, 20, 87, 110, 35, 24, 89, 26, 27, 28, 7, 30, 37, 32, 15, 86, 23, 36, 31, 14, 39, 40, 119, 114, 281, 44, 99, 254, 65, 276, 335, 98, 51, 260, 71, 54, 245, 56, 249, 326, 101, 60, 263, 74, 261, 272, 47, 330, 353, 116, 105, 278, 53, 72, 251, 62, 267, 332, 107, 78, 269, 80, 81, 82, 19
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2016

Keywords

Comments

A263273 conjugated with the permutation obtained from its even bisection.

Crossrefs

Cf. also A265902.
Cf. A265369, A266190, A266401, A266403 (other conjugates or similar derivations of A263273).

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@g[n] h[n]]]; t = Table[f[2 n]/2, {n, 0, 1000}]; Table[t[[f[t[[n + 1]]] + 1]], {n, 0, 83}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(a263272(n))) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265904 n) (A263272 (A263273 (A263272 n))))
    

Formula

a(n) = A263272(A263273(A263272(n))).
As a composition of related permutations:
a(n) = A263272(A265352(n)).
a(n) = A265351(A263272(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

A265330 Zero-based row index to A265345; 2-adic valuation of bijective base-3 reversal of n: a(n) = A007814(A263273(n)).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Examples

			For n = 32, in base-3 "1012" [= A007089(32)], when we reverse it, we get "2101" [= A007089(64)], and 2-adic valuation of 64 [= "1000000" = A007088(64)] is 6, thus a(32) = 6.
		

Crossrefs

One less than A265331.
Cf. A265910 (corresponding other index).
Cf. also A265336, A265337, A265340.
Differs from A007814 for the first time at n=32, where a(32) = 6, while A007814(32) = 5.

Formula

a(n) = A007814(A263273(n)).
a(2n+1) = 0, a(2n) = 1 + a(A265352(n)).

A265357 Permutation of nonnegative integers: a(n) = A264989(A263272(n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 8, 11, 14, 16, 7, 17, 13, 9, 18, 32, 29, 15, 23, 20, 59, 26, 12, 56, 35, 38, 41, 43, 19, 50, 52, 10, 47, 25, 34, 44, 49, 22, 53, 40, 27, 54, 86, 83, 45, 95, 33, 167, 98, 30, 164, 89, 92, 42, 68, 24, 176, 71, 21, 60, 62, 65, 140, 77, 74, 179, 80, 36, 57, 113, 110, 137, 104, 101, 170, 107, 39, 173, 116, 119, 122
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263272 with the permutation obtained from its odd bisection.

Crossrefs

Programs

Formula

a(n) = A264989(A263272(n)).

A265358 Permutation of nonnegative integers: a(n) = A263272(A264989(n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 11, 7, 14, 32, 8, 23, 13, 9, 18, 10, 12, 15, 29, 20, 59, 38, 19, 56, 34, 22, 41, 95, 17, 50, 113, 16, 47, 35, 25, 68, 104, 26, 77, 40, 27, 54, 28, 36, 45, 83, 33, 96, 37, 30, 87, 31, 39, 42, 86, 24, 69, 110, 21, 60, 101, 61, 176, 302, 62, 185, 119, 55, 164, 100, 58, 167, 299, 65, 194, 115, 64, 191, 103, 67, 122
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263272 with the permutation obtained from its odd bisection.

Crossrefs

Programs

Formula

a(n) = A263272(A264989(n)).

A265910 Zero-based column index to array A265345.

Original entry on oeis.org

0, 0, 1, 0, 3, 1, 2, 0, 4, 2, 9, 1, 6, 7, 10, 0, 12, 4, 7, 2, 5, 3, 19, 1, 8, 6, 13, 3, 27, 5, 18, 0, 28, 19, 36, 4, 21, 22, 11, 2, 57, 16, 24, 9, 37, 8, 30, 1, 15, 25, 31, 6, 39, 13, 22, 3, 16, 9, 64, 5, 23, 18, 14, 0, 55, 10, 20, 8, 46, 12, 58, 4, 25, 21, 17, 7, 73, 11, 26, 2, 40
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Crossrefs

One less than A265911.
Cf. A265345, A265352, A265354 (compare the scatter-plot).

Formula

a(2n+1) = A265354(n), a(2n) = a(A265352(n)).
Showing 1-10 of 12 results. Next