cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A265352 Permutation of nonnegative integers: a(n) = A263273(A263272(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 19, 8, 9, 10, 5, 12, 13, 22, 21, 64, 23, 18, 55, 20, 57, 58, 25, 24, 73, 26, 27, 28, 11, 30, 31, 16, 15, 46, 17, 36, 37, 14, 39, 40, 67, 66, 199, 68, 63, 190, 65, 192, 193, 70, 69, 208, 71, 54, 163, 56, 165, 166, 61, 60, 181, 62, 171, 172, 59, 174, 175, 76, 75, 226, 77, 72, 217, 74, 219, 220, 79, 78, 235, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(a263273(2*n)/2) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (define (A265352 n) (A263273 (A263272 n)))
    

Formula

a(n) = A263273(A263272(n)).
As a composition of other related permutations:
a(n) = A265368(A264974(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).

A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 29, 12, 13, 38, 33, 32, 35, 18, 7, 20, 15, 14, 17, 24, 23, 26, 27, 28, 83, 30, 31, 92, 87, 86, 89, 36, 37, 110, 39, 40, 119, 114, 113, 116, 99, 34, 101, 96, 95, 98, 105, 104, 107, 54, 19, 56, 21, 22, 65, 60, 59, 62, 45, 16, 47, 42, 41, 44, 51, 50, 53, 72, 25, 74, 69, 68, 71, 78, 77, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(n)) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265351 n) (A263272 (A263273 n)))
    

Formula

a(n) = A263272(A263273(n)).
As a composition of other related permutations:
a(n) = A264974(A265367(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
a(n) = A265342(n)/2.

A265354 Permutation of nonnegative integers: a(n) = A263273(A264985(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 7, 5, 19, 8, 13, 27, 18, 28, 36, 21, 11, 57, 24, 37, 30, 15, 31, 39, 22, 16, 64, 23, 14, 55, 20, 46, 58, 25, 17, 73, 26, 40, 81, 54, 82, 108, 63, 29, 171, 72, 109, 90, 45, 85, 117, 66, 34, 192, 69, 38, 165, 60, 100, 174, 75, 35, 219, 78, 118, 84, 33, 91, 93, 48, 32, 138, 51, 112, 111, 42, 94, 120, 67
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its odd bisection.

Crossrefs

Inverse: A265353.
Cf. also A265352, A265355, A265356.

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a264985(n): return (a263273(2*n + 1) - 1)/2
    def a(n): return a263273(a264985(n)) # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A265354 n) (A263273 (A264985 n)))
    

Formula

a(n) = A263273(A264985(n)).

A265353 Permutation of nonnegative integers: a(n) = A264985(A263273(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 10, 6, 9, 12, 5, 7, 19, 8, 13, 31, 24, 28, 37, 15, 11, 33, 18, 27, 30, 21, 36, 39, 14, 16, 46, 23, 25, 73, 69, 55, 64, 17, 22, 58, 26, 40, 94, 78, 85, 112, 51, 34, 100, 72, 82, 91, 75, 109, 118, 42, 32, 96, 20, 35, 105, 60, 99, 102, 45, 29, 87, 54, 81, 84, 57, 90, 93, 48, 38, 114, 63, 108, 111, 66, 117, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its odd bisection.

Crossrefs

Inverse: A265354.

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a264985(n): return (a263273(2*n + 1) - 1)/2
    def a(n): return a264985(a263273(n)) # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A265353 n) (A264985 (A263273 n)))
    

Formula

a(n) = A264985(A263273(n)).

A265356 Permutation of nonnegative integers: a(n) = A264985(A263272(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 11, 12, 5, 7, 10, 8, 13, 27, 18, 29, 30, 15, 32, 33, 20, 35, 36, 21, 38, 39, 14, 16, 19, 23, 25, 28, 24, 34, 37, 17, 22, 31, 26, 40, 81, 54, 83, 84, 45, 86, 87, 56, 89, 90, 57, 92, 93, 42, 95, 96, 59, 98, 99, 60, 101, 102, 47, 104, 105, 62, 107, 108, 63, 110, 111, 48, 113, 114, 65, 116, 117, 66, 119, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of permutations obtained from the bisections of A263273.

Crossrefs

Programs

Formula

a(n) = A264985(A263272(n)).

A265357 Permutation of nonnegative integers: a(n) = A264989(A263272(n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 8, 11, 14, 16, 7, 17, 13, 9, 18, 32, 29, 15, 23, 20, 59, 26, 12, 56, 35, 38, 41, 43, 19, 50, 52, 10, 47, 25, 34, 44, 49, 22, 53, 40, 27, 54, 86, 83, 45, 95, 33, 167, 98, 30, 164, 89, 92, 42, 68, 24, 176, 71, 21, 60, 62, 65, 140, 77, 74, 179, 80, 36, 57, 113, 110, 137, 104, 101, 170, 107, 39, 173, 116, 119, 122
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263272 with the permutation obtained from its odd bisection.

Crossrefs

Programs

Formula

a(n) = A264989(A263272(n)).

A265358 Permutation of nonnegative integers: a(n) = A263272(A264989(n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 3, 6, 11, 7, 14, 32, 8, 23, 13, 9, 18, 10, 12, 15, 29, 20, 59, 38, 19, 56, 34, 22, 41, 95, 17, 50, 113, 16, 47, 35, 25, 68, 104, 26, 77, 40, 27, 54, 28, 36, 45, 83, 33, 96, 37, 30, 87, 31, 39, 42, 86, 24, 69, 110, 21, 60, 101, 61, 176, 302, 62, 185, 119, 55, 164, 100, 58, 167, 299, 65, 194, 115, 64, 191, 103, 67, 122
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263272 with the permutation obtained from its odd bisection.

Crossrefs

Programs

Formula

a(n) = A263272(A264989(n)).
Showing 1-7 of 7 results.