cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265377 Sums of two or more consecutive positive cubes.

Original entry on oeis.org

9, 35, 36, 91, 99, 100, 189, 216, 224, 225, 341, 405, 432, 440, 441, 559, 684, 748, 775, 783, 784, 855, 1071, 1196, 1241, 1260, 1287, 1295, 1296, 1584, 1729, 1800, 1925, 1989, 2016, 2024, 2025, 2241, 2331, 2584, 2800, 2925, 2989, 3016, 3024, 3025, 3059, 3060
Offset: 1

Views

Author

Robert Israel, Dec 07 2015

Keywords

Comments

All numbers of the form A000537(b) - A000537(a) for 0 <= a <= b-2.
A217843 minus (A000578 minus A131643).
n is in the sequence iff n = s*t where (s+t)/2 = A000217(u) and (s-t)/2 = A000217(v) with u-v >= 2.
If a(k(n)) = A000537(n+1), k(n) >= A000217(n) for n > 0. - Altug Alkan, Dec 07 2015
See A062682 for sums of two or more consecutive positive cubes in more than one way. - Reinhard Zumkeller, Dec 16 2015

Examples

			a(1) = 1^3 + 2^3 = 9.
a(2) = 2^3 + 3^3 = 35.
a(3) = 1^3 + 2^3 + 3^3 = 36.
		

Crossrefs

Subset of A217843.
Cf. A062682 (subsequence).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert, Set)
    a265377 n = a265377_list !! (n-1)
    a265377_list = f (singleton (1 + 2^3, (1, 2))) (-1) where
       f s z = if y /= z then y : f s'' y else f s'' y
                  where s'' = (insert (y', (i, j')) $
                               insert (y' - i ^ 3 , (i + 1, j')) s')
                        y' = y + j' ^ 3; j' = j + 1
                        ((y, (i, j)), s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 17 2015
  • Maple
    amin:= proc(b,N) local r;
      r:= b^2*(b+1)^2 - 4*N; if r > 0 then iroot(r,4) else 1 fi
    end proc:
    A265377:= proc(N) # to get all terms <= N
      local  a,b;
      sort(convert(select(`<=`,{seq(seq(b^2*(b+1)^2/4 - a^2*(a-1)^2/4,
           a = amin(b,N) .. b-1), b=2..1+iroot(floor(N/2),3))},N),list))
    end proc:
    A265377(10000);
  • Mathematica
    With[{nn=12},Select[Sort[Flatten[Table[Total/@Partition[Range[nn]^3,n,1],{n,2,nn}]]],#<=((nn(nn+1))/2)^3&]] (* Harvey P. Dale, Dec 25 2015 *)