A265377 Sums of two or more consecutive positive cubes.
9, 35, 36, 91, 99, 100, 189, 216, 224, 225, 341, 405, 432, 440, 441, 559, 684, 748, 775, 783, 784, 855, 1071, 1196, 1241, 1260, 1287, 1295, 1296, 1584, 1729, 1800, 1925, 1989, 2016, 2024, 2025, 2241, 2331, 2584, 2800, 2925, 2989, 3016, 3024, 3025, 3059, 3060
Offset: 1
Keywords
Examples
a(1) = 1^3 + 2^3 = 9. a(2) = 2^3 + 3^3 = 35. a(3) = 1^3 + 2^3 + 3^3 = 36.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert, Set) a265377 n = a265377_list !! (n-1) a265377_list = f (singleton (1 + 2^3, (1, 2))) (-1) where f s z = if y /= z then y : f s'' y else f s'' y where s'' = (insert (y', (i, j')) $ insert (y' - i ^ 3 , (i + 1, j')) s') y' = y + j' ^ 3; j' = j + 1 ((y, (i, j)), s') = deleteFindMin s -- Reinhard Zumkeller, Dec 17 2015
-
Maple
amin:= proc(b,N) local r; r:= b^2*(b+1)^2 - 4*N; if r > 0 then iroot(r,4) else 1 fi end proc: A265377:= proc(N) # to get all terms <= N local a,b; sort(convert(select(`<=`,{seq(seq(b^2*(b+1)^2/4 - a^2*(a-1)^2/4, a = amin(b,N) .. b-1), b=2..1+iroot(floor(N/2),3))},N),list)) end proc: A265377(10000);
-
Mathematica
With[{nn=12},Select[Sort[Flatten[Table[Total/@Partition[Range[nn]^3,n,1],{n,2,nn}]]],#<=((nn(nn+1))/2)^3&]] (* Harvey P. Dale, Dec 25 2015 *)
Comments