cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062682 Numbers that are sums of two or more consecutive (positive) cubes in more than 1 way.

Original entry on oeis.org

33075, 89559, 105525, 164800, 188784, 189189, 353241, 443456, 608391, 1271600, 2370816, 3132116, 3132675, 3184236, 5821200, 9018000, 9769375, 11437525, 20793591, 22153600, 24359616, 28685440, 47651373, 55454525, 56078784, 61765200, 77053284
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Examples

			33075 = 11^3 + 12^3 + ... + 19^3 = 15^3 + 16^3 + ... + 20^3.
The first number having three representations is 246153726441216 = (2144^3 + ... + 5631^3) = (3047^3 + ... + 5720^3) = (8072^3 + ... + 8504^3). - _Robert G. Wilson v_, Nov 16 2012
		

Crossrefs

Subsequence of A265377 and of A265845.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert, Set)
    a062682 n = a062682_list !! (n-1)
    a062682_list = f (singleton (1 + 2^3, (1, 2))) 0 0 where
       f s z z' = if y == z && z' /= z then y : f s'' y z else f s'' y z
                  where s'' = (insert (y', (i, j')) $
                               insert (y' - i ^ 3 , (i + 1, j')) s')
                        y' = y + j' ^ 3; j' = j + 1
                        ((y, (i, j)), s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 16 2015
  • Mathematica
    nn = 10^10; t1 = {}; s = 1; i = 1; While[i++; s = s + i^3; s < nn/2, AppendTo[t1, s]]; t = t1; i = 0; While[Length[t1] > 1, i++;  t1 = Rest[t1] - i^3; t = Join[t, t1]]; t = Select[t, # < t1[[1]] &]; t2 = Sort[Select[Tally[t], #[[2]] > 1 &]]; Transpose[t2][[1]] (* T. D. Noe, Nov 16 2012 *)
  • PARI
    list(lim)=my(v=List(),u=v,s,y);for(x=1,(lim\2)^(1/3),s=x^3;y=x;while(1,s+=y++^3;if(s>lim,break,listput(v,s))));v=vecsort(Vec(v));for(i=2,#v,if(v[i]==v[i-1],listput(u,v[i])));vecsort(Vec(u),,8) \\ Charles R Greathouse IV, Nov 16 2012
    

Extensions

Missing a(23)-a(24) from Charles R Greathouse IV, Nov 16 2012

A303383 Total volume of all cubes with side length q such that n = p + q and p <= q.

Original entry on oeis.org

0, 1, 8, 35, 91, 216, 405, 748, 1196, 1925, 2800, 4131, 5643, 7840, 10241, 13616, 17200, 22113, 27216, 34075, 41075, 50336, 59653, 71820, 83916, 99541, 114920, 134603, 153811, 178200, 201825, 231616, 260288, 296225, 330616, 373491, 414315, 464968, 512981
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 22 2018

Keywords

Crossrefs

Cf. A105636.
Subsequence of A217843.
After 8, all terms belong to A265377.

Programs

  • Magma
    [0] cat [&+[(n-k)^3: k in [1..n div 2]]: n in [2..80]]; // Vincenzo Librandi, Apr 23 2018
  • Mathematica
    Table[Sum[(n - i)^3, {i, Floor[n/2]}], {n, 50}]

Formula

a(n) = Sum_{i=1..floor(n/2)} (n-i)^3.
From Bruno Berselli, Apr 23 2018: (Start)
G.f.: x*(1 + x + x^2)*(1 + 6*x + 16*x^2 + 6*x^3 + x^4)/((1 - x)^5*(1 + x)^4).
a(n) = (30*(n - 2)*(n + 1)*(n^2 - n + 2) + (2*n - 1)*(2*n^2 - 2*n - 1)*(-1)^n + 119)/128. Therefore:
a(n) = n^2*(3*n - 2)*(5*n - 6)/64 for n even;
a(n) = (n - 1)^2*(3*n - 1)*(5*n + 1)/64 for n odd. (End)
a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9). - Wesley Ivan Hurt, Apr 23 2021
Showing 1-2 of 2 results.