cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265390 a(n) = lcm_{d|n} tau(d) * Sum_{d|n} 1/tau(d), where tau(d) represents the number of divisors of d (A000005(d)).

Original entry on oeis.org

1, 3, 3, 11, 3, 9, 3, 25, 11, 9, 3, 33, 3, 9, 9, 137, 3, 33, 3, 33, 9, 9, 3, 75, 11, 9, 25, 33, 3, 27, 3, 147, 9, 9, 9, 121, 3, 9, 9, 75, 3, 27, 3, 33, 33, 9, 3, 411, 11, 33, 9, 33, 3, 75, 9, 75, 9, 9, 3, 99, 3, 9, 33, 1089, 9, 27, 3, 33, 9, 27, 3, 275, 3, 9, 33, 33, 9, 27, 3, 411, 137, 9, 3, 99, 9, 9, 9, 75, 3, 99, 9, 33
Offset: 1

Views

Author

Jaroslav Krizek, Dec 08 2015

Keywords

Examples

			For n = 6; divisors d of 6: {1, 2, 3, 6}; tau(d): {1, 2, 2, 4}; LCM_{d|6} tau(d) = 4; a(6) = 4/1 + 4/2 + 4/2 + 4/4 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[LCM([NumberOfDivisors(d): d in Divisors(n)]) / NumberOfDivisors(d): d in Divisors(n) ]: n in [1..100]]
    
  • Mathematica
    Table[LCM @@ DivisorSigma[0, Divisors@ n] Sum[1/DivisorSigma[0, d], {d, Divisors@ n}], {n, 74}] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    A253139(n) = my(d = divisors(n)); lcm(vector(#d, k, numdiv(d[k]))); \\ This function from Michel Marcus, Jan 23 2015
    A265390(n) = (A253139(n) * sumdiv(n,d,(1/numdiv(d)))); \\ Antti Karttunen, Nov 24 2017

Formula

a(n) = A253139(n) * Sum_{d|n} 1/A000005(d) = A265391(n) * A253139(n) / A265392(n).
Multiplicative with a(p^e) = A025529(e+1) = (1/1 + 1/2 + 1/3 + ... + 1/(e+1)) * lcm{1, 2, 3, ..., e+1}.

Extensions

More terms from Antti Karttunen, Nov 24 2017