A265399 Repeatedly perform x^2 -> x+1 reduction for polynomial (with nonnegative integer coefficients) encoded in prime factorization of n, until the polynomial is at most degree 1.
1, 2, 3, 4, 6, 6, 18, 8, 9, 12, 108, 12, 1944, 36, 18, 16, 209952, 18, 408146688, 24, 54, 216, 85691213438976, 24, 36, 3888, 27, 72, 34974584955819144511488, 36, 2997014624388697307377363936018956288, 32, 324, 419904, 108, 36, 104819342594514896999066634490728502944926883876041385836544, 816293376, 5832, 48
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..60
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[p < 5, p, a[NextPrime[p, -1] * NextPrime[p, -2]]]^e; a[1] = 1; a[n_] := a[n] = Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Sep 07 2023 *)
-
PARI
\\ Needs also code from A265398. A265399(n) = if(A065331(n) == n, n, A265399(A265398(n))); for(n=1, 60, write("b265399.txt", n, " ", A265399(n)));
-
Scheme
(definec (A265399 n) (if (= (A065331 n) n) n (A265399 (A265398 n))))
Formula
Extensions
Keyword mult added by Antti Karttunen, Aug 04 2018
Comments