cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A265752 a(n) = A007814(A265399(n)).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 1, 3, 0, 2, 2, 2, 3, 2, 1, 4, 5, 1, 8, 3, 1, 3, 13, 3, 2, 4, 0, 3, 21, 2, 34, 5, 2, 6, 2, 2, 55, 9, 3, 4, 89, 2, 144, 4, 1, 14, 233, 4, 2, 3, 5, 5, 377, 1, 3, 4, 8, 22, 610, 3, 987, 35, 1, 6, 4, 3, 1597, 7, 13, 3, 2584, 3, 4181, 56, 2, 10, 3, 4, 6765, 5, 0, 90, 10946, 3, 6, 145, 21, 5, 17711
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2015

Keywords

Comments

a(n) is the constant term of the reduction by x^2->x+1 of the polynomial encoded in the prime factorization of n. (Assuming here only polynomials with nonnegative integer coefficients, see e.g. A206296 for the details of the encoding).
Completely additive with a(prime(k)) = F(k-2), where F(k) denotes the k-th Fibonacci number, A000045(k) for k >= 0, or A039834(-k) for k <= 0. - Peter Munn, Apr 05 2021, incorporating comment by Antti Karttunen, Dec 15 2015

Crossrefs

Programs

Formula

a(n) = A007814(A265399(n)).
Other identities. For all n >= 1:
a(A000040(n+1)) = A000045(n-1). [Generalized by Peter Munn, Apr 05 2021]
a(A206296(n)) = A192232(n).
a(A265750(n)) = A192750(n).

A265753 a(n) = A007949(A265399(n)).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 1, 5, 2, 2, 0, 8, 2, 13, 1, 3, 3, 21, 1, 2, 5, 3, 2, 34, 2, 55, 0, 4, 8, 3, 2, 89, 13, 6, 1, 144, 3, 233, 3, 3, 21, 377, 1, 4, 2, 9, 5, 610, 3, 4, 2, 14, 34, 987, 2, 1597, 55, 4, 0, 6, 4, 2584, 8, 22, 3, 4181, 2, 6765, 89, 3, 13, 5, 6, 10946, 1, 4, 144, 17711, 3, 9, 233, 35, 3, 28657, 3, 7, 21
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2015

Keywords

Comments

a(n) = Coefficient of x in the reduction under x^2->x+1 of the polynomial encoded in the prime factorization of n. (Assuming here only polynomials with nonnegative integer coefficients, see e.g. A206296 for the details).
Completely additive with a(prime(k)) = F(k-1), where F(k) denotes the k-th Fibonacci number, A000045(k). - Peter Munn, Mar 29 2021, incorporating comment by Antti Karttunen, Dec 15 2015

Crossrefs

Programs

Formula

a(n) = A007949(A265399(n)).
Other identities. For all n >= 1:
a(A000040(n)) = A000045(n-1). [Generalized by Peter Munn, Mar 29 2021]
a(A206296(n)) = A112576(n).
a(A265750(n)) = A192751(n).

A192232 Constant term of the reduction of n-th Fibonacci polynomial by x^2 -> x+1. (See Comments.)

Original entry on oeis.org

1, 0, 2, 1, 6, 7, 22, 36, 89, 168, 377, 756, 1630, 3353, 7110, 14783, 31130, 65016, 136513, 285648, 599041, 1254456, 2629418, 5508097, 11542854, 24183271, 50674318, 106173180, 222470009, 466131960, 976694489, 2046447180, 4287928678, 8984443769, 18825088134
Offset: 1

Views

Author

Clark Kimberling, Jun 26 2011

Keywords

Comments

Polynomial reduction: an introduction
...
We begin with an example. Suppose that p(x) is a polynomial, so that p(x)=(x^2)t(x)+r(x) for some polynomials t(x) and r(x), where r(x) has degree 0 or 1. Replace x^2 by x+1 to get (x+1)t(x)+r(x), which is (x^2)u(x)+v(x) for some u(x) and v(x), where v(x) has degree 0 or 1. Continuing in this manner results in a fixed polynomial w(x) of degree 0 or 1. If p(x)=x^n, then w(x)=x*F(n)+F(n-1), where F=A000045, the sequence of Fibonacci numbers.
In order to generalize, write d(g) for the degree of an arbitrary polynomial g(x), and suppose that p, q, s are polynomials satisfying d(s)s in this manner until reaching w such that d(w)s.
The coefficients of (reduction of p by q->s) comprise a vector of length d(q)-1, so that a sequence p(n,x) of polynomials begets a sequence of vectors, such as (F(n), F(n-1)) in the above example. We are interested in the component sequences (e.g., F(n-1) and F(n)) for various choices of p(n,x).
Following are examples of reduction by x^2->x+1:
n-th Fibonacci p(x) -> A192232+x*A112576
n-th cyclotomic p(x) -> A192233+x*A051258
n-th 1st-kind Chebyshev p(x) -> A192234+x*A071101
n-th 2nd-kind Chebyshev p(x) -> A192235+x*A192236
x(x+1)(x+2)...(x+n-1) -> A192238+x*A192239
(x+1)^n -> A001519+x*A001906
(x^2+x+1)^n -> A154626+x*A087635
(x+2)^n -> A020876+x*A030191
(x+3)^n -> A192240+x*A099453
...
Suppose that b=(b(0), b(1),...) is a sequence, and let p(n,x)=b(0)+b(1)x+b(2)x^2+...+b(n)x^n. We define (reduction of sequence b by q->s) to be the vector given by (reduction of p(n,x) by q->s), with components in the order of powers, from 0 up to d(q)-1. For k=0,1,...,d(q)-1, we then have the "k-sequence of (reduction of sequence b by q->s)". Continuing the example, if b is the sequence given by b(k)=1 if k=n and b(k)=0 otherwise, then the 0-sequence of (reduction of b by x^2->x+1) is (F(n-1)), and the 1-sequence is (F(n)).
...
For selected sequences b, here are the 0-sequences and 1-sequences of (reduction of b by x^2->x+1):
b=A000045, Fibonacci sequence (1,1,2,3,5,8,...) yields
0-sequence A166536 and 1-sequence A064831.
b=(1,A000045)=(1,1,1,2,3,5,8,...) yields
0-sequence A166516 and 1-sequence A001654.
b=A000027, natural number sequence (1,2,3,4,...) yields
0-sequence A190062 and 1-sequence A122491.
b=A000032, Lucas sequence (1,3,4,7,11,...) yields
0-sequence A192243 and 1-sequence A192068.
b=A000217, triangular sequence (1,3,6,10,...) yields
0-sequence A192244 and 1-sequence A192245.
b=A000290, squares sequence (1,4,9,16,...) yields
0-sequence A192254 and 1-sequence A192255.
More examples: A192245-A192257.
...
More comments:
(1) If s(n,x)=(reduction of x^n by q->s) and
p(x)=p(0)x^n+p(1)x^(n-1)+...+p(n)x^0, then
(reduction of p by q->s)=p(0)s(n,x)+p(1)s(n-1,x)
+...+p(n-1)s(1,x)+p(n)s(0,x). See A192744.
(2) For any polynomial p(x), let P(x)=(reduction of p(x)
by q->s). Then P(r)=p(r) for each zero r of
q(x)-s(x). In particular, if q(x)=x^2 and s(x)=x+1,
then P(r)=p(r) if r=(1+sqrt(5))/2 (golden ratio) or
r=(1-sqrt(5))/2.

Examples

			The first four Fibonacci polynomials and their reductions by x^2->x+1 are shown here:
F1(x)=1 -> 1 + 0x
F2(x)=x -> 0 + 1x
F3(x)=x^2+1 -> 2+1x
F4(x)=x^3+2x -> 1+4x
F5(x)=x^4+3x^2+1 -> (x+1)^2+3(x+1)+1 -> 6+6x.
From these, read A192232=(1,0,1,1,6,...) and A112576=(0,1,1,4,6,...).
		

Crossrefs

Programs

  • Mathematica
    q[x_] := x + 1;
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),  x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, Fibonacci[n, x]], {n, 1, 40}];
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}]
      (* A192232 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}]
    (* A112576 *)
    (* Peter J. C. Moses, Jun 25 2011 *)
    LinearRecurrence[{1, 3, -1, -1}, {1, 0, 2, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    Vec((1-x-x^2)/(1-x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 08 2013

Formula

Empirical G.f.: -x*(x^2+x-1)/(x^4+x^3-3*x^2-x+1). - Colin Barker, Sep 11 2012
The above formula is correct. - Charles R Greathouse IV, Jan 08 2013
a(n) = A265752(A206296(n)). - Antti Karttunen, Dec 15 2015
a(n) = A112576(n) -A112576(n-1) -A112576(n-2). - R. J. Mathar, Dec 16 2015

Extensions

Example corrected by Clark Kimberling, Dec 18 2017

A104244 Suppose m = Product_{i=1..k} p_i^e_i, where p_i is the i-th prime number and each e_i is a nonnegative integer. Then we can define P_m(x) = Sum_{i=1..k} e_i*x^(i-1). The sequence is the square array A(n,m) = P_m(n) read by descending antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 1, 2, 3, 1, 0, 2, 4, 2, 4, 1, 0, 1, 3, 9, 2, 5, 1, 0, 3, 8, 4, 16, 2, 6, 1, 0, 2, 3, 27, 5, 25, 2, 7, 1, 0, 2, 4, 3, 64, 6, 36, 2, 8, 1, 0, 1, 5, 6, 3, 125, 7, 49, 2, 9, 1, 0, 3, 16, 10, 8, 3, 216, 8, 64, 2, 10, 1, 0, 1, 4, 81, 17, 10, 3, 343, 9, 81, 2, 11, 1, 0, 2, 32, 5
Offset: 1

Views

Author

Olaf Voß, Feb 26 2005

Keywords

Comments

From Antti Karttunen, Jul 29 2015: (Start)
The square array A(row,col) is read by downwards antidiagonals as: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
A(n,m) (entry at row=n, column=m) gives the evaluation at x=n of the polynomial (with nonnegative integer coefficients) bijectively encoded in the prime factorization of m. See A206284, A206296 for the details of that encoding. (The roles of variables n and m were accidentally swapped in this description, corrected by Antti Karttunen, Oct 30 2016)
(End)
Each row is a completely additive sequence, row n mapping prime(m) to n^(m-1). - Peter Munn, Apr 22 2022

Examples

			a(13) = 3 because 3 = p_1^0 * p_2^1 * p_3^0 * ..., so P_3(x) = 0*x^(1-1) + 1*x^(2-1) + 0*x^(3-1) + ... = x. Hence a(13) = A(3,3) = P_3(3) = 3. [Elaborated by _Peter Munn_, Aug 13 2022]
The top left corner of the array:
0, 1,  1, 2,   1,  2,   1,  3,  2,   2,     1,  3,      1,    2,   2, 4
0, 1,  2, 2,   4,  3,   8,  3,  4,   5,    16,  4,     32,    9,   6, 4
0, 1,  3, 2,   9,  4,  27,  3,  6,  10,    81,  5,    243,   28,  12, 4
0, 1,  4, 2,  16,  5,  64,  3,  8,  17,   256,  6,   1024,   65,  20, 4
0, 1,  5, 2,  25,  6,  125, 3, 10,  26,   625,  7,   3125,  126,  30, 4
0, 1,  6, 2,  36,  7,  216, 3, 12,  37,  1296,  8,   7776,  217,  42, 4
0, 1,  7, 2,  49,  8,  343, 3, 14,  50,  2401,  9,  16807,  344,  56, 4
0, 1,  8, 2,  64,  9,  512, 3, 16,  65,  4096, 10,  32768,  513,  72, 4
0, 1,  9, 2,  81, 10,  729, 3, 18,  82,  6561, 11,  59049,  730,  90, 4
0, 1, 10, 2, 100, 11, 1000, 3, 20, 101, 10000, 12, 100000, 1001, 110, 4
...
		

Crossrefs

Cf. A000720.
Transpose: A104245.
Main diagonal: A090883.
Row 1: A001222, row 2: A048675, row 3: A090880, row 4: A090881, row 5: A090882, row 10: A054841; and, in the extrapolated table, row 0: A007814, row -1: A195017.
Other completely additive sequences with prime(k) mapped to a function of k include k: A056239, k-1: A318995, k+1: A318994, k^2: A289506, 2^k-1: A293447, k!: A276075, F(k-1): A265753, F(k-2): A265752.
For completely additive sequences with primes p mapped to a function of p, see A001414.
For completely additive sequences where some primes are mapped to 1, the rest to 0 (notably, some ruler functions) see the cross-references in A249344.
For completely additive sequences, s, with primes p mapped to a function of s(p-1) and maybe s(p+1), see A352957.
See the formula section for the relationship to A073133, A206296.
See the comments for the relevance of A206284.
A297845 represents multiplication of the relevant polynomials.
Cf. A090884, A248663, A265398, A265399 for other related sequences.
A167219 lists columns that contain their own column number.

Formula

A(n,A206296(k)) = A073133(n,k). [This formula demonstrates how this array can be used with appropriately encoded polynomials. Note that A073133 reads its antidiagonals by ascending order, while here the order is opposite.] - Antti Karttunen, Oct 30 2016
From Peter Munn, Apr 05 2021: (Start)
The sequence is defined by the following identities:
A(n, 3) = n;
A(n, m*k) = A(n, m) + A(n, k);
A(n, A297845(m, k)) = A(n, m) * A(n, k).
(End)

Extensions

Starting offset changed from 0 to 1 by Antti Karttunen, Jul 29 2015
Name edited (and aligned with rest of sequence) by Peter Munn, Apr 23 2022

A265398 Perform one x^2 -> x+1 reduction for the polynomial with nonnegative integer coefficients that is encoded in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 6, 6, 15, 8, 9, 12, 35, 12, 77, 30, 18, 16, 143, 18, 221, 24, 45, 70, 323, 24, 36, 154, 27, 60, 437, 36, 667, 32, 105, 286, 90, 36, 899, 442, 231, 48, 1147, 90, 1517, 140, 54, 646, 1763, 48, 225, 72, 429, 308, 2021, 54, 210, 120, 663, 874, 2491, 72, 3127, 1334, 135, 64, 462, 210, 3599, 572, 969, 180, 4087, 72
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2015

Keywords

Comments

Completely multiplicative with a(2) = 2, a(3) = 3, a(prime(k)) = prime(k-1) * prime(k-2) for k > 2. - Andrew Howroyd & Antti Karttunen, Aug 04 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{k, p, e}, Which[n<4, n, PrimeQ[n], k = PrimePi[n]; Prime[k-1] Prime[k-2], True, Product[{p, e} = pe; a[p]^e, {pe, FactorInteger[n]}]]];
    a /@ Range[1, 72] (* Jean-François Alcover, Sep 20 2019 *)
    f[p_, e_] := If[p < 5, p, NextPrime[p,-1]*NextPrime[p,-2]]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 01 2022 *)
  • PARI
    A065330(n) = { while(0 == (n%2), n = n/2); while(0 == (n%3), n = n/3); n; }
    A065331 = n -> n/A065330(n);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A265398(n) = { my(a); if(1 == n, n, a = A064989(A065330(n)); A064989(a)*a*A065331(n)); };
    
  • PARI
    r(p) = {my(q = precprime(p-1)); q*precprime(q-1)};
    a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,1]<5, f[i,1], r(f[i,1]))^f[i,2])}; \\ Amiram Eldar, Dec 01 2022
    
  • Scheme
    (definec (A265398 n) (if (= 1 n) n (* (A065331 n) (A064989 (A065330 n)) (A064989 (A064989 (A065330 n))))))

Formula

a(1) = 1; for n > 1, a(n) = A064989(A064989(A065330(n))) * A064989(A065330(n)) * A065331(n).
Sum_{k=1..n} a(k) = c * n^3, where c = (1/3) * Product_{p prime} (p^3-p^2)/(p^3-a(p)) = 0.093529982... . - Amiram Eldar, Dec 01 2022

Extensions

Keyword mult added by Antti Karttunen, Aug 04 2018
Showing 1-5 of 5 results.