A192232 Constant term of the reduction of n-th Fibonacci polynomial by x^2 -> x+1. (See Comments.)
1, 0, 2, 1, 6, 7, 22, 36, 89, 168, 377, 756, 1630, 3353, 7110, 14783, 31130, 65016, 136513, 285648, 599041, 1254456, 2629418, 5508097, 11542854, 24183271, 50674318, 106173180, 222470009, 466131960, 976694489, 2046447180, 4287928678, 8984443769, 18825088134
Offset: 1
Examples
The first four Fibonacci polynomials and their reductions by x^2->x+1 are shown here: F1(x)=1 -> 1 + 0x F2(x)=x -> 0 + 1x F3(x)=x^2+1 -> 2+1x F4(x)=x^3+2x -> 1+4x F5(x)=x^4+3x^2+1 -> (x+1)^2+3(x+1)+1 -> 6+6x. From these, read A192232=(1,0,1,1,6,...) and A112576=(0,1,1,4,6,...).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1,-1).
Programs
-
Mathematica
q[x_] := x + 1; reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[FixedPoint[Expand[#1 /. reductionRules] &, Fibonacci[n, x]], {n, 1, 40}]; Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192232 *) Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A112576 *) (* Peter J. C. Moses, Jun 25 2011 *) LinearRecurrence[{1, 3, -1, -1}, {1, 0, 2, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
-
PARI
Vec((1-x-x^2)/(1-x-3*x^2+x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Jan 08 2013
Formula
Empirical G.f.: -x*(x^2+x-1)/(x^4+x^3-3*x^2-x+1). - Colin Barker, Sep 11 2012
The above formula is correct. - Charles R Greathouse IV, Jan 08 2013
Extensions
Example corrected by Clark Kimberling, Dec 18 2017
Comments