cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265611 a(n) = a(n-1) + floor((n-1)/2) - (-1)^n + 2 for n>=2, a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 4, 8, 10, 15, 18, 24, 28, 35, 40, 48, 54, 63, 70, 80, 88, 99, 108, 120, 130, 143, 154, 168, 180, 195, 208, 224, 238, 255, 270, 288, 304, 323, 340, 360, 378, 399, 418, 440, 460, 483, 504, 528, 550, 575, 598, 624, 648, 675, 700, 728, 754, 783, 810, 840
Offset: 0

Views

Author

Peter Luschny, Dec 17 2015

Keywords

Crossrefs

Cf. A084964 and A097065, after the first 3: a(n+1) - a(n) for n>0.
Cf. A055998, after 3: a(n+1) + a(n) for n>0.
Cf. A063929: a(2*n+1) gives the second column of the triangle; for n>0, a(2*n) gives the third column.

Programs

  • Magma
    [1] cat [(2*n*(n+6)-5*(-1)^n+5)/8: n in [1..60]]; // Bruno Berselli, Dec 18 2015
  • Maple
    A265611 := proc(n) iquo(n+1,2); %*(%+irem(n+1,2)+2)+0^n end:
    seq(A265611(n), n=0..55);
  • Mathematica
    Join[{1}, Table[(2 n (n + 6) - 5 (-1)^n + 5)/8, {n, 1, 60}]] (* Bruno Berselli, Dec 18 2015 *)
  • PARI
    Vec((x^4-2*x^3+2*x^2-x-1)/(x^4-2*x^3+2*x-1) + O(x^1000)) \\ Altug Alkan, Dec 18 2015
    
  • Sage
    # The initial values x, y = 0, 1 give the quarter-squares A002620.
    def A265611():
        x, y = 1, 2
        while True:
           yield x
           x, y = x + y, x//y + 1
    a = A265611(); print([next(a) for i in range(60)])
    

Formula

O.g.f.: (x^4-2*x^3+2*x^2-x-1)/(x^4-2*x^3+2*x-1).
E.g.f.: 1-(5/8)*exp(-x)+(1/8)*(5+14*x+2*x^2)*exp(x).
a(2*n) = n*(n+3) + 0^n = A028552(n) + 0^n. [Here 0^0 = 1, otherwise 0^s = 0. - N. J. A. Sloane, Aug 26 2022]
a(2*n+1) = (n+1)*(n+3) = A005563(n+1).
a(n+1) - a(n) = floor(n/2) + 2 + (-1)^n - 0^n.
a(n) = a(-n-6) = (2*n*(n+6) - 5*(-1)^n + 5)/8 for n>0, a(0)=1. [Bruno Berselli, Dec 18 2015]
For n>0, a(n) = n + 1 + Sum_{i=1..n+1} floor(i/2) + (-1)^i = n + floor((n+1)^2/4) + (1 - (-1)^n)/2. - Enrique Pérez Herrero, Dec 18 2015
Sum_{n>=0} 1/a(n) = 85/36. - Enrique Pérez Herrero, Dec 18 2015
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. - R. H. Hardin, Dec 21 2015, proved by Susanne Wienand for the algorithm sent to the seqfan mailing list and used in the Sage script below.
a(n) = A002620(n+1) + A052928(n+1) for n>=1. (Note A198442(n) = A002620(n+2) - A052928(n+2) for n>=1.) - Peter Luschny, Dec 22 2015
a(n) = (floor((n+3)/2)-1)*(ceiling((n+3)/2)+1) for n>0. - Wesley Ivan Hurt, Mar 30 2017