cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265672 a(n) = n + floor((n+1)/7)*(-1)^((n+1) mod 7).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 9, 8, 11, 10, 13, 15, 12, 17, 14, 19, 16, 21, 23, 18, 25, 20, 27, 22, 29, 31, 24, 33, 26, 35, 28, 37, 39, 30, 41, 32, 43, 34, 45, 47, 36, 49, 38, 51, 40, 53, 55, 42, 57, 44, 59, 46, 61, 63, 48, 65, 50, 67, 52, 69, 71, 54, 73, 56, 75
Offset: 0

Views

Author

Paul Curtz, Dec 13 2015

Keywords

Comments

A permutation of A001477. This sequence, without the terms of the form 8*k+5, becomes A265228.
Similar sequences of the type n + floor((n+1)/k)*(-1)^((n+1) mod k):
k = 1: A005408;
k = 2: A014682;
k = 3: A006369 (permutation of A001477);
k = 4: 0, 1, 2, 4, 3, 6, 5, 9, 6, 11, 8, 14, ...;
k = 5: 0, 1, 2, 3, 5, 4, 7, 6, 9, 11, 8, 13, ... (permutation of A001477);
k = 6: 0, 1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, ...;
k = 7: this sequence.

Examples

			-------------------------------------------------------------------------
0, 1, 2, 3, 4, 5, 6,  7, 8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
+  +  +  +  +  +  +   +  +   +   +   +   +   +   +   +   +   +   +
0, 0, 0, 0, 0, 0, 1, -1, 1, -1,  1, -1,  1,  2, -2,  2, -2,  2, -2, ...
-------------------------------------------------------------------------
0, 1, 2, 3, 4, 5, 7,  6, 9,  8, 11, 10, 13, 15, 12, 17, 14, 19, 16, ...
-------------------------------------------------------------------------
		

Crossrefs

Programs

  • Magma
    [n+Floor((n+1)/7)*(-1)^((n+1) mod 7): n in [0..80]]; // Bruno Berselli, Dec 26 2015
  • Maple
    A265672:=n->n + floor((n+1)/7)*(-1)^((n+1) mod 7): seq(A265672(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[n + Floor[(n + 1)/7] (-1)^Mod[n + 1, 7], {n, 0, 80}] (* Bruno Berselli, Dec 22 2015 *)
  • PARI
    concat(0, Vec(x*(1 +x^2)*(1 +2*x +2*x^2 +2*x^3 +3*x^4 +5*x^5 +3*x^6 +2*x^7 +x^8 +3*x^9 +x^10) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2) + O(x^100))) \\ Colin Barker, Dec 13 2015
    

Formula

a(n) = a(n-7) + (-1)^((n+1) mod 7) + 7 for n>6.
From Colin Barker, Dec 13 2015: (Start)
a(n) = 2*a(n-7) - a(n-14) for n>13.
G.f.: x*(1 +x^2)*(1 +2*x +2*x^2 +2*x^3 +3*x^4 +5*x^5 +3*x^6 +2*x^7 +x^8 +3*x^9 +x^10) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)^2). (End)

Extensions

Edited by Bruno Berselli, Dec 22 2015