cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265676 a(n) is the total number of petals of the Flower of Life at the n-th iteration.

Original entry on oeis.org

0, 1, 7, 19, 43, 67, 97, 139, 181, 229, 289, 349, 415, 493, 571, 655, 751, 847, 949, 1063, 1177, 1297, 1429, 1561, 1699, 1849, 1999, 2155, 2323, 2491, 2665, 2851, 3037, 3229, 3433, 3637, 3847, 4069, 4291, 4519, 4759, 4999, 5245, 5503, 5761, 6025, 6301, 6577
Offset: 0

Views

Author

Kival Ngaokrajang, Dec 13 2015

Keywords

Comments

Inspired by A264788, but counting on petals of the Flower of Life instead of circles. For n >= 3, the second differences seem to be cyclic of 6, 12, 0.

Crossrefs

Cf. A264788.

Programs

  • Magma
    I:=[0,1,7,19,43,67]; [n le 6 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-3)-2*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Dec 14 2015
  • Mathematica
    CoefficientList[Series[x (1 + 5 x + 6 x^2 + 11 x^3 - 5 x^4)/((1 - x)^3 (1 + x + x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 14 2015 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,7,19,43,67},50] (* Harvey P. Dale, Aug 26 2024 *)
  • PARI
    { a = 7; d1 = 6; print1("0, 1, ", a, ", "); for(n = 3, 100, if (Mod(n,3) == 0, d2 = 6); if (Mod(n,3) == 1, d2 = 12); if (Mod(n,3) == 2, d2 = 0); d1 = d1 + d2; a = a + d1; print1(a, ", "))}
    
  • PARI
    concat(0, Vec(x*(1+5*x+6*x^2+11*x^3-5*x^4) / ((1-x)^3*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Dec 13 2015
    

Formula

From Colin Barker, Dec 13 2015: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5.
G.f.: x*(1+5*x+6*x^2+11*x^3-5*x^4) / ((1-x)^3*(1+x+x^2)).
(End)