A265705 Triangle read by rows: T(n,k) = k IMPL n, 0 <= k <= n, bitwise logical IMPL.
0, 1, 1, 3, 2, 3, 3, 3, 3, 3, 7, 6, 5, 4, 7, 7, 7, 5, 5, 7, 7, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 15, 14, 13, 12, 11, 10, 9, 8, 15, 15, 15, 13, 13, 11, 11, 9, 9, 15, 15, 15, 14, 15, 14, 11, 10, 11, 10, 15, 14, 15, 15, 15, 15, 15, 11, 11, 11, 11, 15
Offset: 0
Examples
. 10 | 1010 12 | 1100 . 4 | 100 6 | 110 . ----------+----- ----------+----- . 4 IMPL 10 | 1011 -> T(10,4)=11 6 IMPL 12 | 1101 -> T(12,6)=13 . First 16 rows of the triangle, where non-symmetrical rows are marked, see comment concerning A158582 and A089633: . 0: 0 . 1: 1 1 . 2: 3 2 3 . 3: 3 3 3 3 . 4: 7 6 5 4 7 X . 5: 7 7 5 5 7 7 . 6: 7 6 7 6 7 6 7 . 7: 7 7 7 7 7 7 7 7 . 8: 15 14 13 12 11 10 9 8 15 X . 9: 15 15 13 13 11 11 9 9 15 15 X . 10: 15 14 15 14 11 10 11 10 15 14 15 X . 11: 15 15 15 15 11 11 11 11 15 15 15 15 . 12: 15 14 13 12 15 14 13 12 15 14 13 12 15 X . 13: 15 15 13 13 15 15 13 13 15 15 13 13 15 15 . 14: 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 . 15: 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 .
Links
- Reinhard Zumkeller, Rows n = 0..255 of triangle, flattened
- Eric Weisstein's World of Mathematics, Implies
Crossrefs
Programs
-
Haskell
a265705_tabl = map a265705_row [0..] a265705_row n = map (a265705 n) [0..n] a265705 n k = k `bimpl` n where bimpl 0 0 = 0 bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0 where (p', u) = divMod p 2; (q', v) = divMod q 2
-
Julia
using IntegerSequences for n in 0:15 println(n == 0 ? [0] : [Bits("IMP", k, n) for k in 0:n]) end # Peter Luschny, Sep 25 2021
-
Maple
A265705 := (n, k) -> Bits:-Implies(k, n): seq(seq(A265705(n, k), k=0..n), n=0..11); # Peter Luschny, Sep 23 2019
-
Mathematica
T[n_, k_] := If[n == 0, 0, BitOr[2^Length[IntegerDigits[n, 2]]-1-k, n]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 25 2021, after David A. Corneth's PARI code *)
-
PARI
T(n, k) = if(n==0,return(0)); bitor((2<
David A. Corneth, Sep 24 2021
Formula
T(n,0) = T(n,n) = A003817(n).
T(2*n,n) = A265716(n).
Let m = A089633(n): T(m,k) = T(m,m-k), k = 0..m.
Let m = A158582(n): T(m,k) != T(m,m-k) for at least one k <= n.
Let m = A247648(n): T(2*m,m) = 2*m.
For n > 0: A029578(n+2) = number of odd terms in row n; no even terms in odd-indexed rows.
A265885(n) = T(prime(n),n).
A053644(n) = smallest k such that row k contains n.