cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A265736 Row sums of triangle A265705.

Original entry on oeis.org

0, 2, 8, 12, 29, 38, 46, 56, 107, 126, 144, 164, 177, 198, 218, 240, 407, 446, 484, 524, 557, 598, 638, 680, 691, 734, 776, 820, 857, 902, 946, 992, 1583, 1662, 1740, 1820, 1893, 1974, 2054, 2136, 2187, 2270, 2352, 2436, 2513, 2598, 2682, 2768, 2727, 2814
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 15 2015

Keywords

Comments

a(A000225(n)) = A020522(n).

Crossrefs

Programs

  • Haskell
    a265736 = sum . a265705_row

A053644 Most significant bit of n, msb(n); largest power of 2 less than or equal to n; write n in binary and change all but the first digit to zero.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
Offset: 0

Views

Author

Henry Bottomley, Mar 22 2000

Keywords

Comments

Except for the initial term, 2^n appears 2^n times. - Lekraj Beedassy, May 26 2005
a(n) is the smallest k such that row k in triangle A265705 contains n. - Reinhard Zumkeller, Dec 17 2015
a(n) is the sum of totient function over powers of 2 <= n. - Anthony Browne, Jun 17 2016
Given positive n, reverse the bits of n and divide by 2^floor(log_2 n). Numerators are in A030101. Ignoring the initial 0, denominators are in this sequence. - Alonso del Arte, Feb 11 2020

Crossrefs

See A000035 for least significant bit(n).
MASKTRANS transform of A055975 (prepended with 0), MASKTRANSi transform of A048678.
Bisection of A065267, A065279, A065291, A072376.
First differences of A063915. Cf. A076877, A073121.
This is Guy Steele's sequence GS(5, 5) (see A135416).
Equals for n >= 1 the first right hand column of A160464. - Johannes W. Meijer, May 24 2009
Diagonal of A088370. - Alois P. Heinz, Oct 28 2011

Programs

  • Haskell
    a053644 n = if n <= 1 then n else 2 * a053644 (div n 2)
    -- Reinhard Zumkeller, Aug 28 2014
    a053644_list = 0 : concat (iterate (\zs -> map (* 2) (zs ++ zs)) [1])
    -- Reinhard Zumkeller, Dec 08 2012, Oct 21 2011, Oct 17 2010
    
  • Magma
    [0] cat [2^Ilog2(n): n in [1..90]]; // Vincenzo Librandi, Dec 11 2018
    
  • Maple
    a:= n-> 2^ilog2(n):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    A053644[n_] := 2^(Length[ IntegerDigits[n, 2]] - 1); A053644[0] = 0; Table[A053644[n], {n, 0, 74}] (* Jean-François Alcover, Dec 01 2011 *)
    nv[n_] := Module[{c = 2^n}, Table[c, {c}]]; Join[{0}, Flatten[Array[nv, 7, 0]]] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    a(n)=my(k=1);while(k<=n,k<<=1);k>>1 \\ Charles R Greathouse IV, May 27 2011
    
  • PARI
    a(n) = if(!n, 0, 2^exponent(n)) \\ Iain Fox, Dec 10 2018
    
  • Python
    def a(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1) # Indranil Ghosh, May 25 2017
    
  • Python
    def A053644(n): return 1<Chai Wah Wu, Jul 27 2022
  • Scala
    (0 to 127).map(Integer.highestOneBit()) // _Alonso del Arte, Feb 26 2020
    

Formula

a(n) = a(floor(n / 2)) * 2.
a(n) = 2^A000523(n).
From n >= 1 onward, A053644(n) = A062383(n)/2.
a(0) = 0, a(1) = 1 and a(n+1) = a(n)*floor(n/a(n)). - Benoit Cloitre, Aug 17 2002
G.f.: 1/(1 - x) * (x + Sum_{k >= 1} 2^(k - 1)*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = (A003817(n) + 1)/2 = A091940(n) + 1. - Reinhard Zumkeller, Feb 15 2004
a(n) = Sum_{k = 1..n} (floor(2^k/k) - floor((2^k - 1)/k))*A000010(k). - Anthony Browne, Jun 17 2016
a(2^m+k) = 2^m, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 07 2016

A089633 Numbers having no more than one 0 in their binary representation.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 11, 13, 14, 15, 23, 27, 29, 30, 31, 47, 55, 59, 61, 62, 63, 95, 111, 119, 123, 125, 126, 127, 191, 223, 239, 247, 251, 253, 254, 255, 383, 447, 479, 495, 503, 507, 509, 510, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1023
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 01 2004

Keywords

Comments

Complement of A158582. - Reinhard Zumkeller, Apr 16 2009
Also union of A168604 and A030130. - Douglas Latimer, Jul 19 2012
Numbers of the form 2^t - 2^k - 1, 0 <= k < t.
n is in the sequence if and only if 2*n+1 is in the sequence. - Robert Israel, Dec 14 2018
Also the least binary rank of a strict integer partition of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). - Gus Wiseman, May 24 2024

Examples

			From _Tilman Piesk_, May 09 2012: (Start)
This may also be viewed as a triangle:             In binary:
                  0                                         0
               1     2                                 01       10
             3    5    6                          011      101      110
           7   11   13   14                  0111     1011     1101     1110
        15   23   27   29   30          01111    10111    11011    11101    11110
      31  47   55   59   61   62
   63   95  111  119  123  125  126
Left three diagonals are A000225,  A055010, A086224. Right diagonal is A000918. Central column is A129868. Numbers in row n (counted from 0) have n binary 1s. (End)
From _Gus Wiseman_, May 24 2024: (Start)
The terms together with their binary expansions and binary indices begin:
   0:      0 ~ {}
   1:      1 ~ {1}
   2:     10 ~ {2}
   3:     11 ~ {1,2}
   5:    101 ~ {1,3}
   6:    110 ~ {2,3}
   7:    111 ~ {1,2,3}
  11:   1011 ~ {1,2,4}
  13:   1101 ~ {1,3,4}
  14:   1110 ~ {2,3,4}
  15:   1111 ~ {1,2,3,4}
  23:  10111 ~ {1,2,3,5}
  27:  11011 ~ {1,2,4,5}
  29:  11101 ~ {1,3,4,5}
  30:  11110 ~ {2,3,4,5}
  31:  11111 ~ {1,2,3,4,5}
  47: 101111 ~ {1,2,3,4,6}
  55: 110111 ~ {1,2,3,5,6}
  59: 111011 ~ {1,2,4,5,6}
  61: 111101 ~ {1,3,4,5,6}
  62: 111110 ~ {2,3,4,5,6}
(End)
		

Crossrefs

Cf. A181741 (primes), union of A081118 and A000918, apart from initial -1.
For least binary index (instead of rank) we have A001511.
Applying A019565 (Heinz number of binary indices) gives A077011.
For greatest binary index we have A029837 or A070939, opposite A070940.
Row minima of A118462 (binary ranks of strict partitions).
For sum instead of minimum we have A372888, non-strict A372890.
A000009 counts strict partitions, ranks A005117.
A048675 gives binary rank of prime indices, distinct A087207.
A048793 lists binary indices, product A096111, reverse A272020.
A277905 groups all positive integers by binary rank of prime indices.

Programs

  • Haskell
    a089633 n = a089633_list !! (n-1)
    a089633_list = [2 ^ t - 2 ^ k - 1 | t <- [1..], k <- [t-1,t-2..0]]
    -- Reinhard Zumkeller, Feb 23 2012
    
  • Maple
    seq(seq(2^a-1-2^b,b=a-1..0,-1),a=1..11); # Robert Israel, Dec 14 2018
  • Mathematica
    fQ[n_] := DigitCount[n, 2, 0] < 2; Select[ Range[0, 2^10], fQ] (* Robert G. Wilson v, Aug 02 2012 *)
  • PARI
    {insq(n) = local(dd, hf, v); v=binary(n);hf=length(v);dd=sum(i=1,hf,v[i]);if(dd<=hf-2,-1,1)}
    {for(w=0,1536,if(insq(w)>=0,print1(w,", ")))}
    \\ Douglas Latimer, May 07 2013
    
  • PARI
    isoka(n) = #select(x->(x==0), binary(n)) <= 1; \\ Michel Marcus, Dec 14 2018
    
  • Python
    from itertools import count, islice
    def A089633_gen(): # generator of terms
        return ((1<A089633_list = list(islice(A089633_gen(),30)) # Chai Wah Wu, Feb 10 2023
    
  • Python
    from math import isqrt, comb
    def A089633(n): return (1<<(a:=(isqrt((n<<3)+1)-1>>1)+1))-(1<Chai Wah Wu, Dec 19 2024

Formula

A023416(a(n)) <= 1; A023416(a(n)) = A023532(n-2) for n>1;
A000120(a(u)) <= A000120(a(v)) for uA000120(a(n)) = A003056(n).
a(0)=0, n>0: a(n+1) = Min{m>n: BinOnes(a(n))<=BinOnes(m)} with BinOnes=A000120.
If m = floor((sqrt(8*n+1) - 1) / 2), then a(n) = 2^(m+1) - 2^(m*(m+3)/2 - n) - 1. - Carl R. White, Feb 10 2009
A029931(a(n)) = n and A029931(m) != n for m < a(n). - Reinhard Zumkeller, Feb 28 2014
A265705(a(n),k) = A265705(a(n),a(n)-k), k = 0 .. a(n). - Reinhard Zumkeller, Dec 15 2015
a(A014132(n)-1) = 2*a(n-1)+1 for n >= 1. - Robert Israel, Dec 14 2018
Sum_{n>=1} 1/a(n) = A065442 + A160502 = 3.069285887459... . - Amiram Eldar, Jan 09 2024
A019565(a(n)) = A077011(n). - Gus Wiseman, May 24 2024

A003817 a(0) = 0, a(n) = a(n-1) OR n.

Original entry on oeis.org

0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63
Offset: 0

Views

Author

Keywords

Comments

Also, 0+1+2+...+n in lunar arithmetic in base 2 written in base 10. - N. J. A. Sloane, Oct 02 2010
For n>0: replace all 0's with 1's in binary representation of n. - Reinhard Zumkeller, Jul 14 2003

Crossrefs

This is Guy Steele's sequence GS(6, 6) (see A135416).
Cf. A167832, A167878. - Reinhard Zumkeller, Nov 14 2009
Cf. A179526; subsequence of A007448. - Reinhard Zumkeller, Jul 18 2010
Cf. A265705.

Programs

  • Haskell
    import Data.Bits ((.|.))
    a003817 n = if n == 0 then 0 else 2 * a053644 n - 1
    a003817_list = scanl (.|.) 0 [1..] :: [Integer]
    -- Reinhard Zumkeller, Dec 08 2012, Jan 15 2012
    
  • Maple
    A003817 := n -> n + Bits:-Nand(n, n):
    seq(A003817(n), n=0..61); # Peter Luschny, Sep 23 2019
  • Mathematica
    a[0] = 0; a[n_] := a[n] = BitOr[ a[n-1], n]; Table[a[n], {n, 0, 61}] (* Jean-François Alcover, Dec 19 2011 *)
    nxt[{n_,a_}]:={n+1,BitOr[a,n+1]}; Transpose[NestList[nxt,{0,0},70]] [[2]] (* Harvey P. Dale, May 06 2016 *)
    2^BitLength[Range[0,100]]-1 (* Paolo Xausa, Feb 08 2024 *)
  • PARI
    a(n)=1<<(log(2*n+1)\log(2))-1 \\ Charles R Greathouse IV, Dec 08 2011
    
  • Python
    def a(n): return 0 if n==0 else 1 + 2*a(int(n/2)) # Indranil Ghosh, Apr 28 2017
    
  • Python
    def A003817(n): return (1<Chai Wah Wu, Jul 17 2024

Formula

a(n) = a(n-1) + n*(1-floor(a(n-1)/n)). If 2^(k-1) <= n < 2^k, a(n) = 2^k - 1. - Benoit Cloitre, Aug 25 2002
a(n) = 1 + 2*a(floor(n/2)) for n > 0. - Benoit Cloitre, Apr 04 2003
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*x^2^k. - Ralf Stephan, Apr 18 2003
a(n) = 2*A053644(n)-1 = A092323(n) + A053644(n). - Reinhard Zumkeller, Feb 15 2004; corrected by Anthony Browne, Jun 26 2016
a(n) = OR{k OR (n-k): 0<=k<=n}. - Reinhard Zumkeller, Jul 15 2008
For n>0: a(n+1) = A035327(n) + n = A035327(n) XOR n. - Reinhard Zumkeller, Nov 14 2009
A092323(n+1) = floor(a(n)/2). - Reinhard Zumkeller, Jul 18 2010
a(n) = A265705(n,0) = A265705(n,n). - Reinhard Zumkeller, Dec 15 2015
a(n) = A062383(n) - 1.
G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 - x). - Ilya Gutkovskiy, Aug 31 2019
a(n) >= A175039(n) - Austin Shapiro, Dec 29 2022

A029578 The natural numbers interleaved with the even numbers.

Original entry on oeis.org

0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12, 7, 14, 8, 16, 9, 18, 10, 20, 11, 22, 12, 24, 13, 26, 14, 28, 15, 30, 16, 32, 17, 34, 18, 36, 19, 38, 20, 40, 21, 42, 22, 44, 23, 46, 24, 48, 25, 50, 26, 52, 27, 54, 28, 56, 29, 58, 30, 60, 31, 62, 32, 64, 33, 66, 34, 68, 35, 70, 36, 72
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of ordered, length two, compositions of n with at least one odd summand - Len Smiley, Nov 25 2001
Also number of 0's in n-th row of triangle in A071037. - Hans Havermann, May 26 2002
For n > 2: a(n) = number of odd terms in row n-2 of triangle A265705. - Reinhard Zumkeller, Dec 15 2015

Crossrefs

Cf. A065423 (at least one even summand).
Cf. A001477, A005843, A009531, A071037, A211538 (partial sums), A265705.

Programs

  • Haskell
    import Data.List (transpose)
    a029578 n =  (n - n `mod` 2) `div` (2 - n `mod` 2)
    a029578_list = concat $ transpose [a001477_list, a005843_list]
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    A029578:= func< n | (n + (n-2)*(n mod 2))/2 >;
    [A029578(n): n in [0..80]]; // G. C. Greubel, Jan 22 2025
    
  • Mathematica
    With[{nn=40},Riffle[Range[0,nn],Range[0,2nn,2]]] (* or *) LinearRecurrence[ {0,2,0,-1},{0,0,1,2},80] (* Harvey P. Dale, Aug 23 2015 *)
  • PARI
    a(n)=if(n%2,n-1,n/2)
    
  • Python
    def A029578(n): return (n + (n-2)*(n%2))//2
    print([A029578(n) for n in range(81)]) # G. C. Greubel, Jan 22 2025

Formula

a(n) = (3*n - 2 - (-1)^n*(n - 2))/4.
a(n+4) = 2*a(n+2) - a(n).
G.f.: x^2*(1 + 2*x)/(1-x^2)^2.
a(n) = floor((n+1)/2) + (n is odd)*floor((n+1)/2).
a(n) = (n - n mod 2)/(2 - n mod 2). - Reinhard Zumkeller, Jul 30 2002
a(n) = floor(n/2)*binomial(2, mod(n, 2)) - Paul Barry, May 25 2003
a(2*n) = n.
a(2*n-1) = 2*n-2.
a(-n) = -A065423(n+2).
a(n) = Sum_{k=0..floor((n-2)/2)} (C(n-k-2, k) mod 2)((1+(-1)^k)/2)*2^A000120(n-2k-2). - Paul Barry, Jan 06 2005
a(n) = Sum_{k=0..n-2} gcd(n-k-1, k+1). - Paul Barry, May 03 2005
For n>6: a(n) = floor(a(n-1)*a(n-2)/a(n-3)). - Reinhard Zumkeller, Mar 06 2011
E.g.f.: (1/4)*((x+2)*exp(-x) + (3*x-2)*exp(x)). - G. C. Greubel, Jan 22 2025

Extensions

Explicated definition by Reinhard Zumkeller, Nov 27 2012
Title simplified by Sean A. Irvine, Feb 29 2020

A247648 Numbers whose binary expansion begins and ends with 1 and does not contain two adjacent zeros.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 21, 23, 27, 29, 31, 43, 45, 47, 53, 55, 59, 61, 63, 85, 87, 91, 93, 95, 107, 109, 111, 117, 119, 123, 125, 127, 171, 173, 175, 181, 183, 187, 189, 191, 213, 215, 219, 221, 223, 235, 237, 239, 245, 247, 251, 253
Offset: 1

Views

Author

N. J. A. Sloane, Sep 25 2014

Keywords

Comments

Decimal equivalents of A247647.
A265716(a(n)) = A265705(2*a(n),a(n)) = 2*a(n). - Reinhard Zumkeller, Dec 15 2015
The viabin numbers of the integer partitions having distinct parts (for the definition of viabin number see comment in A290253). For example, 109 is in the sequence because it is the viabin number of the integer partition [5,4,2]; 121 is not in the sequence because it is the viabin number of the integer partition [5,4,4]. - Emeric Deutsch, Aug 29 2017

Examples

			109 is in the sequence because its binary expansion is 1101101.
		

Crossrefs

Cf. A247875 (complement).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a247648 n = a247648_list !! (n-1)
    a247648_list = f $ singleton 1 where
       f s = x : f (insert (4 * x + 1) $ insert (2 * x + 1) s')
             where (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 25 2014
    
  • Maple
    vitopart := proc (n) local L, i, j, N, p, t: N := 2*n: L := ListTools:-Reverse(convert(N, base, 2)): j := 0: for i to nops(L) do if L[i] = 0 then j := j+1: p[j] := numboccur(L[1 .. i], 1) end if end do: sort([seq(p[t], t = 1 .. j)], `>=`) end proc: a := proc (n) if n = 1 then 1 elif `mod`(n, 2) = 0 then a((1/2)*n) elif `mod`(n, 2) = 1 and `mod`((1/2)*n-1/2, 2) = 0 then a((1/2)*n-1/2)+1 else a((1/2)*n-1/2) end if end proc: A := {}: for n to 254 do if a(n) = nops(vitopart(n)) then A := `union`(A, {n}) else end if end do: A; # program is based on my comment; the command vitopart(n) yields the integer partition having viabin number n. # Emeric Deutsch, Aug 29 2017
  • Mathematica
    Select[Range@ 256, And[First@ # == Last@ # == 1, NoneTrue[Map[Length, Select[Split[#], First@ # == 0 &]], # > 1 &]] &@ IntegerDigits[#, 2] &] (* Michael De Vlieger, Aug 29 2017 *)
  • PARI
    isok(k) = if (k%2, my(b=binary(k)); #select(x->(x==0), vector(#b-1, k, b[k]+b[k+1])) == 0); \\ Michel Marcus, Jun 15 2024
  • Python
    A247648_list = [n for n in range(1,10**5) if n % 2 and not '00' in bin(n)]
    # Chai Wah Wu, Sep 25 2014
    

A080098 Triangle T(n,k) = n OR k, 0 <= k <= n, bitwise logical OR, read by rows.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 3, 3, 3, 4, 5, 6, 7, 4, 5, 5, 7, 7, 5, 5, 6, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 9, 11, 11, 13, 13, 15, 15, 9, 9, 10, 11, 10, 11, 14, 15, 14, 15, 10, 11, 10, 11, 11, 11, 11, 15, 15, 15, 15, 11, 11, 11, 11, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Examples

			Triangle begins:
   0,
   1,  1,
   2,  3,  2,
   3,  3,  3,  3,
   4,  5,  6,  7,  4,
   5,  5,  7,  7,  5,  5,
   6,  7,  6,  7,  6,  7,  6,
   7,  7,  7,  7,  7,  7,  7,  7,
   8,  9, 10, 11, 12, 13, 14, 15,  8,
   9,  9, 11, 11, 13, 13, 15, 15,  9,  9,
  10, 11, 10, 11, 14, 15, 14, 15, 10, 11, 10,
  ...
		

Crossrefs

Cf. A001316 (number of integers k such that T(n, k) = n in n-th row).
Cf. A350093 (row sums), A003986 (array).
Other triangles: A080099 (AND), A051933 (XOR), A265705 (IMPL), A102037 (CNIMPL).

Programs

  • Haskell
    import Data.Bits ((.|.))
    a080098 n k = n .|. k :: Int
    a080098_row n = map (a080098 n) [0..n]
    a080098_tabl = map a080098_row [0..]
    -- Reinhard Zumkeller, Aug 03 2014, Jul 05 2012
    
  • Mathematica
    T[n_, k_] := n ~BitOr~ k;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
  • Python
    def T(n, k): return n | k
    print([T(n, k) for n in range(13) for k in range(n+1)]) # Michael S. Branicky, Dec 01 2021

A080099 Triangle T(n,k) = n AND k, 0<=k<=n, bitwise logical AND, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 1, 2, 3, 0, 0, 0, 0, 4, 0, 1, 0, 1, 4, 5, 0, 0, 2, 2, 4, 4, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 1, 0, 1, 0, 1, 0, 1, 8, 9, 0, 0, 2, 2, 0, 0, 2, 2, 8, 8, 10, 0, 1, 2, 3, 0, 1, 2, 3, 8, 9, 10, 11, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 0, 1, 0, 1, 4, 5, 4, 5, 8, 9, 8, 9
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Comments

A080100(n) = number of numbers k such that n AND k = 0 in n-th row of the triangular array.

Examples

			Triangle starts:
0
0 1
0 0 2
0 1 2 3
0 0 0 0 4
0 1 0 1 4 5
0 0 2 2 4 4 6
0 1 2 3 4 5 6 7
...
		

Crossrefs

Cf. A080100, A222423 (row sums), A004198 (array).
Other triangles: A080098 (OR), A051933 (XOR), A265705 (IMPL), A102037 (CNIMPL).

Programs

  • Haskell
    import Data.Bits ((.&.))
    a080099 n k = n .&. k :: Int
    a080099_row n = map (a080099 n) [0..n]
    a080099_tabl = map a080099_row [0..]
    -- Reinhard Zumkeller, Aug 03 2014, Jul 05 2012
    
  • Mathematica
    Column[Table[BitAnd[n, k], {n, 0, 15}, {k, 0, n}], Center] (* Alonso del Arte, Jun 19 2012 *)
  • PARI
    T(n,k)=bitand(n,k) \\ Charles R Greathouse IV, Jan 26 2013
    
  • Python
    def T(n, k): return n & k
    print([T(n, k) for n in range(14) for k in range(n+1)]) # Michael S. Branicky, Dec 16 2021

A051933 Triangle T(n,m) = Nim-sum (or XOR) of n and m, read by rows, 0<=m<=n.

Original entry on oeis.org

0, 1, 0, 2, 3, 0, 3, 2, 1, 0, 4, 5, 6, 7, 0, 5, 4, 7, 6, 1, 0, 6, 7, 4, 5, 2, 3, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 9, 10, 11, 12, 13, 14, 15, 0, 9, 8, 11, 10, 13, 12, 15, 14, 1, 0, 10, 11, 8, 9, 14, 15, 12, 13, 2, 3, 0, 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 1999

Keywords

Examples

			{0},
{1,0},
{2,3,0},
{3,2,1,0}, ...
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 60.
  • J. H. Conway, On Numbers and Games, Academic Press, p. 52.

Crossrefs

Cf. A224915 (row sums), A003987 (array), A051910 (Nim-product).
Other triangles: A080099 (AND), A080098 (OR), A265705 (IMPL), A102037 (CNIMPL), A002262 (k).

Programs

  • Haskell
    import Data.Bits (xor)
    a051933 n k = n `xor` k :: Int
    a051933_row n = map (a051933 n) [0..n]
    a051933_tabl = map a051933_row [0..]
    -- Reinhard Zumkeller, Aug 02 2014, Aug 13 2013
    
  • Julia
    using IntegerSequences
    A051933Row(n) = [Bits("XOR", n, k) for k in 0:n]
    for n in 0:10 println(A051933Row(n)) end  # Peter Luschny, Sep 25 2021
  • Maple
    nimsum := proc(a,b) local t1,t2,t3,t4,l; t1 := convert(a+2^20,base,2); t2 := convert(b+2^20,base,2); t3 := evalm(t1+t2); map(x->x mod 2, t3); t4 := convert(evalm(%),list); l := convert(t4,base,2,10); sum(l[k]*10^(k-1), k=1..nops(l)); end; # memo: adjust 2^20 to be much bigger than a and b
    AT := array(0..N,0..N); for a from 0 to N do for b from a to N do AT[a,b] := nimsum(a,b); AT[b,a] := AT[a,b]; od: od:
    # Alternative:
    A051933 := (n, k) -> Bits:-Xor(n, k):
    seq(seq(A051933(n, k), k=0..n), n=0..12); # Peter Luschny, Sep 23 2019
  • Mathematica
    Flatten[Table[BitXor[m, n], {m, 0, 12}, {n, 0, m}]] (* Jean-François Alcover, Apr 29 2011 *)

Extensions

More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

A158582 Numbers with at least two zeros in their binary representation.

Original entry on oeis.org

4, 8, 9, 10, 12, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 60, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 16 2009

Keywords

Comments

Subsequence of A158581; complement of A089633; A023416(a(n))>1.
A265705(a(n),k) != A265705(a(n),a(n)-k) for at least one k <= a(n). - Reinhard Zumkeller, Dec 15 2015

Crossrefs

Programs

  • Haskell
    a158582 n = a158582_list !! (n-1)
    a158582_list = [x | x <- [0..], a023416 x > 1]
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Mathematica
    Select[Range[100],DigitCount[#,2,0]>1&] (* Harvey P. Dale, Jan 19 2015 *)
  • Python
    def A158582(n):
        def f(x):
            c = n+(((l:=(x+1).bit_length())+1)*(l-2)>>1)
            m = bin(x+1)[2:].find('0')
            c += m if m>-1 else l
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Dec 24 2024
Showing 1-10 of 13 results. Next