cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 118 results. Next

A292944 a(n) = A292272(A004754(n)) - 2*A053644(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 2, 0, 1, 2, 2, 4, 5, 4, 4, 0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 16, 17, 18, 18, 20, 21, 20, 20, 16, 17, 18, 18, 16, 17, 16, 16, 0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 16, 17, 18, 18, 20, 21, 20, 20, 16, 17, 18, 18, 16, 17, 16, 16, 32, 33, 34, 34, 36, 37, 36, 36
Offset: 0

Views

Author

Antti Karttunen, Sep 28 2017

Keywords

Comments

In binary expansion (A007088) of n, clear the most significant bit and all those 1-bits that have another 1-bit at their left side, except for the second most significant 1-bit, even in cases where the binary expansion begins as "11...".
Because A292943(n) = a(A243071(n)), the sequence works as a "masking function" where the 1-bits in a(n) (always a subset of the 1-bits in binary expansion of n) indicate which numbers are of the form 6k+3 (odd multiples of three) in binary tree A163511 (or its mirror image tree A005940) on that trajectory which leads from the root of the tree to the node containing A163511(n).

Examples

			For n = 23, 10111 in binary, when we clear (change to zero) the most significant bit (always 1) and also all 1-bits that have 1's at their left side, we are left with 100, which in binary stands for 4, thus a(23) = 4.
For n = 27, 11011 in binary, when we clear the most significant bit, and also all 1-bits that have 1's at their left side except the second most significant, we are left with 1010, which in binary stands for ten, thus a(27) = 10.
		

Crossrefs

Programs

Formula

a(n) = A292272(A004754(n)) - 2*A053644(n).
a(n) = A292943(A163511(n)).
Other identities. For all n >= 0:
a(n) + A292264(n) = A292942(n) + a(n) + A292946(n) = a(n) + A292254(n) + A292256(n) = n.
a(n) = a(n) AND n; a(n) AND A292264(n) = 0, where AND is bitwise-and (A004198).

A300724 Möbius transform of A053644(n), largest power of 2 less than or equal to n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 4, 6, 3, 7, 2, 7, 3, 3, 8, 15, 6, 15, 6, 11, 7, 15, 4, 12, 7, 8, 6, 15, 3, 15, 16, 23, 15, 25, 12, 31, 15, 23, 12, 31, 11, 31, 14, 18, 15, 31, 8, 28, 12, 15, 14, 31, 8, 21, 12, 15, 15, 31, 6, 31, 15, 10, 32, 53, 23, 63, 30, 47, 25, 63, 24, 63, 31, 44, 30, 53, 23, 63, 24, 48, 31, 63, 22, 45, 31, 47, 28, 63, 18, 53, 30, 47, 31
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d)*A053644(d).
a(n) + A300725(n) = A000010(n).

A266341 If A036987(n) = 1, a(n) = n - A053644(n), otherwise a(n) = n - A053644(n) + 2^(A063250(n)-1).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 6, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 12, 13, 14, 15, 14, 15, 15, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 24, 25, 26, 27, 28, 29, 30, 31, 28, 29, 30, 31, 30, 31, 31, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
Offset: 0

Views

Author

Antti Karttunen, Jan 13 2016

Keywords

Comments

Informally: In binary representation of n, move the most significant 1-bit to the position of the most significant 0-bit ("the leftmost free hole"), and remove it altogether if there are no such holes, i.e., if n is one of the terms of A000225. When the subsets of nonnegative integers are associated with the binary expansion of n in the usual way (bit-k is 1 if number k is present in the set, and 0 stands for an empty set) then a(n) corresponds to the set obtained by "squashing" the set which corresponds to n. See Kubo & Vakil paper, page 240, 8.1 Compression revisited.

Examples

			For n=13, "1101" in binary, we remove the most significant bit to get "101", where the most significant nonleading 0 is then filled with that 1, to get "111", which is 7's binary representation, thus a(13) = 7.
For n=15, "1111" in binary, we remove the most significant bit to get "111" (= 7), and as there is no most significant nonleading 0 present, the result is just that, and a(15) = 7.
For n=21, "10101" in binary, removing the most significant bit and moving it to the position of next zero results "1101", thus a(21) = 13.
		

Crossrefs

Programs

  • PARI
    a(n) = my(s=bitnegimply(n>>1,n)); n - if(n,1<Kevin Ryde, Jun 15 2023
  • Python
    from sympy import catalan
    def a063250(n):
        if n<2: return 0
        b=bin(n)[2:]
        s=0
        while b.count("0")!=0:
            N=int(b[-1] + b[:-1], 2)
            s+=1
            b=bin(N)[2:]
        return s
    def a053644(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1)
    def a036987(n): return catalan(n)%2
    def a(n): return n - a053644(n) if a036987(n)==1 else n - a053644(n) + 2**(a063250(n) - 1) # Indranil Ghosh, May 25 2017
    

Formula

a(0) = 0; after which, for n = 2^k - 1 (when k >= 1) a(n) = 2^(k-1) - 1, otherwise a(n) = n - A053644(n) + 2^(A063250(n)-1).
Equally: if A063250(n) = 0, a(n) = n - A053644(n), otherwise a(n) = n - A053644(n) + 2^(A063250(n)-1).
Other identities. For all n >= 0:
a(n) = A209862(-1+A004001(1+A209861(n))). [Not yet proved that the required permutations are just A209861 & A209862, although this has been checked empirically up to n=32769. See also Kubo & Vakil paper.]

A368427 A permutation related to the Christmas tree pattern map (A367508): a(1) = 1, and for any n > 1, a(n) = A053644(n) + A367562(n-1).

Original entry on oeis.org

1, 2, 3, 6, 4, 5, 7, 12, 13, 10, 14, 8, 9, 11, 15, 26, 24, 25, 27, 28, 20, 21, 29, 18, 22, 30, 16, 17, 19, 23, 31, 52, 53, 50, 54, 48, 49, 51, 55, 56, 57, 42, 58, 40, 41, 43, 59, 44, 60, 36, 37, 45, 61, 34, 38, 46, 62, 32, 33, 35, 39, 47, 63, 106, 104, 105
Offset: 1

Views

Author

Rémy Sigrist, Dec 24 2023

Keywords

Comments

This sequence is a permutation of the positive integers (with inverse A368428):
- the Christmas tree pattern map runs through all finite nonempty binary words,
- by prefixing these words with a 1, we obtain the binary expansions of all integers >= 2,
- hence, with the leading term a(1) = 1, we have a permutation of the positive integers.
Apparently, A088163 \ {0} corresponds to the fixed points.
We can also obtain this sequence by applying the Christmas tree pattern map starting from the chain "1" (instead of "0 1") and converting the resulting binary words to decimal.

Examples

			The first terms, alongside their binary expansion and the corresponding word in the Christmas tree pattern map, are:
  n   a(n)  bin(a(n))  Xmas word
  --  ----  ---------  ---------
   1     1          1        N/A
   2     2         10          0
   3     3         11          1
   4     6        110         10
   5     4        100         00
   6     5        101         01
   7     7        111         11
   8    12       1100        100
   9    13       1101        101
  10    10       1010        010
  11    14       1110        110
  12     8       1000        000
  13     9       1001        001
  14    11       1011        011
  15    15       1111        111
		

Crossrefs

Programs

  • Mathematica
    With[{imax=7},Map[FromDigits[#,2]&,Flatten[NestList[Map[Delete[{If[Length[#]>1,Map[#<>"0"&,Rest[#]],Nothing],Join[{#[[1]]<>"0"},Map[#<>"1"&,#]]},0]&],{{"1"}},imax-1]]]] (* Generates terms up to order 7 *) (* Paolo Xausa, Dec 28 2023 *)
  • PARI
    See Links section.
    
  • Python
    from itertools import islice
    from functools import reduce
    def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
    def agen():  # generator of terms
        R = [["1"]]
        while R:
            r = R.pop(0)
            yield from map(lambda b: int(b, 2), r)
            if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
            R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
    print(list(islice(agen(), 66))) # Michael S. Branicky, Dec 24 2023

A266349 a(n) = 1 + A053644(n) - A004001(n+1) = 1 + A072376(n) - A266348(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 1, 1, 1, 1, 8, 7, 6, 5, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 16, 15, 14, 13, 12, 12, 11, 10, 9, 9, 8, 7, 7, 6, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 32, 31, 30, 29, 28, 27, 27, 26, 25, 24, 23, 23, 22, 21, 20, 20, 19, 18, 18, 17, 17, 17, 16, 15, 14, 14, 13, 12, 12, 11, 11, 11, 10
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2016

Keywords

Comments

Used in a recursive formula of A265754.

Crossrefs

Programs

  • Mathematica
    b[1] = 1; b[2] = 1; b[n_] := b[n] = b[b[n - 1]] + b[n - b[n - 1]]; Table[1 + 2^(Ceiling@ Log2[n + 1] - 1) - b[n + 1], {n, 96}] (* Michael De Vlieger, Jan 26 2016, after Robert G. Wilson v at A004001 *)

Formula

a(n) = 1 + A053644(n) - A004001(n+1).
a(n) = 1 + A072376(n) - A266348(n).

A300726 Difference between A053644 (the largest power of 2 less than or equal to n) and its Möbius transform.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 5, 5, 8, 1, 10, 1, 10, 5, 9, 1, 12, 4, 9, 8, 10, 1, 13, 1, 16, 9, 17, 7, 20, 1, 17, 9, 20, 1, 21, 1, 18, 14, 17, 1, 24, 4, 20, 17, 18, 1, 24, 11, 20, 17, 17, 1, 26, 1, 17, 22, 32, 11, 41, 1, 34, 17, 39, 1, 40, 1, 33, 20, 34, 11, 41, 1, 40, 16, 33, 1, 42, 19, 33, 17, 36, 1, 46, 11, 34, 17, 33, 19
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2018

Keywords

Crossrefs

Programs

  • Mathematica
    With[{s = Array[2^Floor@ Log2@ # &, 95]}, Table[s[[n]] - DivisorSum[n, MoebiusMu[n/#] s[[#]] &], {n, Length@ s}]] (* Michael De Vlieger, Mar 13 2018 *)
  • PARI
    A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
    A300726(n) = -sumdiv(n,d,(dA053644(d));

Formula

a(n) = -Sum_{d|n, dA008683(n/d)*A053644(d).
a(n) = A053644(n) - A300724(n).

A000079 Powers of 2: a(n) = 2^n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Keywords

Comments

2^0 = 1 is the only odd power of 2.
Number of subsets of an n-set.
There are 2^(n-1) compositions (ordered partitions) of n (see for example Riordan). This is the unlabeled analog of the preferential labelings sequence A000670.
This is also the number of weakly unimodal permutations of 1..n + 1, that is, permutations with exactly one local maximum. E.g., a(4) = 16: 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their reversals. - Jon Perry, Jul 27 2003 [Proof: see next line! See also A087783.]
Proof: n must appear somewhere and there are 2^(n-1) possible choices for the subset that precedes it. These must appear in increasing order and the rest must follow n in decreasing order. QED. - N. J. A. Sloane, Oct 26 2003
a(n+1) is the smallest number that is not the sum of any number of (distinct) earlier terms.
Same as Pisot sequences E(1, 2), L(1, 2), P(1, 2), T(1, 2). See A008776 for definitions of Pisot sequences.
With initial 1 omitted, same as Pisot sequences E(2, 4), L(2, 4), P(2, 4), T(2, 4). - David W. Wilson
Not the sum of two or more consecutive numbers. - Lekraj Beedassy, May 14 2004
Least deficient or near-perfect numbers (i.e., n such that sigma(n) = A000203(n) = 2n - 1). - Lekraj Beedassy, Jun 03 2004. [Comment from Max Alekseyev, Jan 26 2005: All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2.]
Almost-perfect numbers referred to as least deficient or slightly defective (Singh 1997) numbers. Does "near-perfect numbers" refer to both almost-perfect numbers (sigma(n) = 2n - 1) and quasi-perfect numbers (sigma(n) = 2n + 1)? There are no known quasi-perfect or least abundant or slightly excessive (Singh 1997) numbers.
The sum of the numbers in the n-th row of Pascal's triangle; the sum of the coefficients of x in the expansion of (x+1)^n.
The Collatz conjecture (the hailstone sequence will eventually reach the number 1, regardless of which positive integer is chosen initially) may be restated as (the hailstone sequence will eventually reach a power of 2, regardless of which positive integer is chosen initially).
The only hailstone sequence which doesn't rebound (except "on the ground"). - Alexandre Wajnberg, Jan 29 2005
With p(n) as the number of integer partitions of n, p(i) is the number of parts of the i-th partition of n, d(i) is the number of different parts of the i-th partition of n, m(i,j) is the multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i = 1..p(n)} (p(i)! / (Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of binary relations on an n-element set that are both symmetric and antisymmetric. Also the number of binary relations on an n-element set that are symmetric, antisymmetric and transitive.
The first differences are the sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
a(n) is the largest number with shortest addition chain involving n additions. - David W. Wilson, Apr 23 2006
Beginning with a(1) = 0, numbers not equal to the sum of previous distinct natural numbers. - Giovanni Teofilatto, Aug 06 2006
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n} -> {1, 2} such that for a fixed x in {1, 2, ..., n} and a fixed y in {1, 2} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) is the number of pairs of elements {x,y} of P(A) for which x = y. - Ross La Haye, Jan 09 2008
a(n) is the number of permutations on [n+1] such that every initial segment is an interval of integers. Example: a(3) counts 1234, 2134, 2314, 2341, 3214, 3241, 3421, 4321. The map "p -> ascents of p" is a bijection from these permutations to subsets of [n]. An ascent of a permutation p is a position i such that p(i) < p(i+1). The permutations shown map to 123, 23, 13, 12, 3, 2, 1 and the empty set respectively. - David Callan, Jul 25 2008
2^(n-1) is the largest number having n divisors (in the sense of A077569); A005179(n) is the smallest. - T. D. Noe, Sep 02 2008
a(n) appears to match the number of divisors of the modified primorials (excluding 2, 3 and 5). Very limited range examined, PARI example shown. - Bill McEachen, Oct 29 2008
Successive k such that phi(k)/k = 1/2, where phi is Euler's totient function. - Artur Jasinski, Nov 07 2008
A classical transform consists (for general a(n)) in swapping a(2n) and a(2n+1); examples for Jacobsthal A001045 and successive differences: A092808, A094359, A140505. a(n) = A000079 leads to 2, 1, 8, 4, 32, 16, ... = A135520. - Paul Curtz, Jan 05 2009
This is also the (L)-sieve transform of {2, 4, 6, 8, ..., 2n, ...} = A005843. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 23 2009
a(n) = a(n-1)-th even natural number (A005843) for n > 1. - Jaroslav Krizek, Apr 25 2009
For n >= 0, a(n) is the number of leaves in a complete binary tree of height n. For n > 0, a(n) is the number of nodes in an n-cube. - K.V.Iyer, May 04 2009
Permutations of n+1 elements where no element is more than one position right of its original place. For example, there are 4 such permutations of three elements: 123, 132, 213, and 312. The 8 such permutations of four elements are 1234, 1243, 1324, 1423, 2134, 2143, 3124, and 4123. - Joerg Arndt, Jun 24 2009
Catalan transform of A099087. - R. J. Mathar, Jun 29 2009
a(n) written in base 2: 1,10,100,1000,10000,..., i.e., (n+1) times 1, n times 0 (A011557(n)). - Jaroslav Krizek, Aug 02 2009
Or, phi(n) is equal to the number of perfect partitions of n. - Juri-Stepan Gerasimov, Oct 10 2009
These are the 2-smooth numbers, positive integers with no prime factors greater than 2. - Michael B. Porter, Oct 04 2009
A064614(a(n)) = A000244(n) and A064614(m) < A000244(n) for m < a(n). - Reinhard Zumkeller, Feb 08 2010
a(n) is the largest number m such that the number of steps of iterations of {r - (largest divisor d < r)} needed to reach 1 starting at r = m is equal to n. Example (a(5) = 32): 32 - 16 = 16; 16 - 8 = 8; 8 - 4 = 4; 4 - 2 = 2; 2 - 1 = 1; number 32 has 5 steps and is the largest such number. See A105017, A064097, A175125. - Jaroslav Krizek, Feb 15 2010
a(n) is the smallest proper multiple of a(n-1). - Dominick Cancilla, Aug 09 2010
The powers-of-2 triangle T(n, k), n >= 0 and 0 <= k <= n, begins with: {1}; {2, 4}; {8, 16, 32}; {64, 128, 256, 512}; ... . The first left hand diagonal T(n, 0) = A006125(n + 1), the first right hand diagonal T(n, n) = A036442(n + 1) and the center diagonal T(2*n, n) = A053765(n + 1). Some triangle sums, see A180662, are: Row1(n) = A122743(n), Row2(n) = A181174(n), Fi1(n) = A181175(n), Fi2(2*n) = A181175(2*n) and Fi2(2*n + 1) = 2*A181175(2*n + 1). - Johannes W. Meijer, Oct 10 2010
Records in the number of prime factors. - Juri-Stepan Gerasimov, Mar 12 2011
Row sums of A152538. - Gary W. Adamson, Dec 10 2008
A078719(a(n)) = 1; A006667(a(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 2-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Equals A001405 convolved with its right-shifted variant: (1 + 2x + 4x^2 + ...) = (1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + 6x^5 + ...). - Gary W. Adamson, Nov 23 2011
The number of odd-sized subsets of an n+1-set. For example, there are 2^3 odd-sized subsets of {1, 2, 3, 4}, namely {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Also, note that 2^n = Sum_{k=1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
a(n) is the number of 1's in any row of Pascal's triangle (mod 2) whose row number has exactly n 1's in its binary expansion (see A007318 and A047999). (The result of putting together A001316 and A000120.) - Marcus Jaiclin, Jan 31 2012
A204455(k) = 1 if and only if k is in this sequence. - Wolfdieter Lang, Feb 04 2012
For n>=1 apparently the number of distinct finite languages over a unary alphabet, whose minimum regular expression has alphabetic width n (verified up to n=17), see the Gruber/Lee/Shallit link. - Hermann Gruber, May 09 2012
First differences of A000225. - Omar E. Pol, Feb 19 2013
This is the lexicographically earliest sequence which contains no arithmetic progression of length 3. - Daniel E. Frohardt, Apr 03 2013
a(n-2) is the number of bipartitions of {1..n} (i.e., set partitions into two parts) such that 1 and 2 are not in the same subset. - Jon Perry, May 19 2013
Numbers n such that the n-th cyclotomic polynomial has a root mod 2; numbers n such that the n-th cyclotomic polynomial has an even number of odd coefficients. - Eric M. Schmidt, Jul 31 2013
More is known now about non-power-of-2 "Almost Perfect Numbers" as described in Dagal. - Jonathan Vos Post, Sep 01 2013
Number of symmetric Ferrers diagrams that fit into an n X n box. - Graham H. Hawkes, Oct 18 2013
Numbers n such that sigma(2n) = 2n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
a(1), ..., a(floor(n/2)) are all values of permanent on set of square (0,1)-matrices of order n>=2 with row and column sums 2. - Vladimir Shevelev, Nov 26 2013
Numbers whose base-2 expansion has exactly one bit set to 1, and thus has base-2 sum of digits equal to one. - Stanislav Sykora, Nov 29 2013
A072219(a(n)) = 1. - Reinhard Zumkeller, Feb 20 2014
a(n) is the largest number k such that (k^n-2)/(k-2) is an integer (for n > 1); (k^a(n)+1)/(k+1) is never an integer (for k > 1 and n > 0). - Derek Orr, May 22 2014
If x = A083420(n), y = a(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
The mini-sequence b(n) = least number k > 0 such that 2^k ends in n identical digits is given by {1, 18, 39}. The repeating digits are {2, 4, 8} respectively. Note that these are consecutive powers of 2 (2^1, 2^2, 2^3), and these are the only powers of 2 (2^k, k > 0) that are only one digit. Further, this sequence is finite. The number of n-digit endings for a power of 2 with n or more digits id 4*5^(n-1). Thus, for b(4) to exist, one only needs to check exponents up to 4*5^3 = 500. Since b(4) does not exist, it is clear that no other number will exist. - Derek Orr, Jun 14 2014
The least number k > 0 such that 2^k ends in n consecutive decreasing digits is a 3-number sequence given by {1, 5, 25}. The consecutive decreasing digits are {2, 32, 432}. There are 100 different 3-digit endings for 2^k. There are no k-values such that 2^k ends in '987', '876', '765', '654', '543', '321', or '210'. The k-values for which 2^k ends in '432' are given by 25 mod 100. For k = 25 + 100*x, the digit immediately before the run of '432' is {4, 6, 8, 0, 2, 4, 6, 8, 0, 2, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus, we see the digit before '432' will never be a 5. So, this sequence is complete. - Derek Orr, Jul 03 2014
a(n) is the number of permutations of length n avoiding both 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Numbers n such that sigma(n) = sigma(2n) - phi(4n). - Farideh Firoozbakht, Aug 14 2014
This is a B_2 sequence: for i < j, differences a(j) - a(i) are all distinct. Here 2*a(n) < a(n+1) + 1, so a(n) - a(0) < a(n+1) - a(n). - Thomas Ordowski, Sep 23 2014
a(n) counts n-walks (closed) on the graph G(1-vertex; 1-loop, 1-loop). - David Neil McGrath, Dec 11 2014
a(n-1) counts walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 3-loop, 4-loop, ...). - David Neil McGrath, Jan 01 2015
b(0) = 4; b(n+1) is the smallest number not in the sequence such that b(n+1) - Prod_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n) = a(n) for n > 2. - Derek Orr, Jan 15 2015
a(n) counts the permutations of length n+2 whose first element is 2 such that the permutation has exactly one descent. - Ran Pan, Apr 17 2015
a(0)-a(30) appear, with a(26)-a(30) in error, in tablet M 08613 (see CDLI link) from the Old Babylonian period (c. 1900-1600 BC). - Charles R Greathouse IV, Sep 03 2015
Subsequence of A028982 (the squares or twice squares sequence). - Timothy L. Tiffin, Jul 18 2016
A000120(a(n)) = 1. A000265(a(n)) = 1. A000593(a(n)) = 1. - Juri-Stepan Gerasimov, Aug 16 2016
Number of monotone maps f : [0..n] -> [0..n] which are order-increasing (i <= f(i)) and idempotent (f(f(i)) = f(i)). In other words, monads on the n-th ordinal (seen as a posetal category). Any monad f determines a subset of [0..n] that contains n, by considering its set of monad algebras = fixed points { i | f(i) = i }. Conversely, any subset S of [0..n] containing n determines a monad on [0..n], by the function i |-> min { j | i <= j, j in S }. - Noam Zeilberger, Dec 11 2016
Consider n points lying on a circle. Then for n>=2 a(n-2) gives the number of ways to connect two adjacent points with nonintersecting chords. - Anton Zakharov, Dec 31 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Also the number of independent vertex sets and vertex covers in the n-empty graph. - Eric W. Weisstein, Sep 21 2017
Also the number of maximum cliques in the n-halved cube graph for n > 4. - Eric W. Weisstein, Dec 04 2017
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-1. - Nick Mayers, Jun 25 2018
The multiplicative group of integers modulo a(n) is cyclic if and only if n = 0, 1, 2. For n >= 3, it is a product of two cyclic groups. - Jianing Song, Jun 27 2018
k^n is the determinant of n X n matrix M_(i, j) = binomial(k + i + j - 2, j) - binomial(i+j-2, j), in this case k=2. - Tony Foster III, May 12 2019
Solutions to the equation Phi(2n + 2*Phi(2n)) = 2n. - M. Farrokhi D. G., Jan 03 2020
a(n-1) is the number of subsets of {1,2,...,n} which have an element that is the size of the set. For example, for n = 4, a(3) = 8 and the subsets are {1}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}. - Enrique Navarrete, Nov 21 2020
a(n) is the number of self-inverse (n+1)-order permutations with 231-avoiding. E.g., a(3) = 8: [1234, 1243, 1324, 1432, 2134, 2143, 3214, 4321]. - Yuchun Ji, Feb 26 2021
For any fixed k > 0, a(n) is the number of ways to tile a strip of length n+1 with tiles of length 1, 2, ... k, where the tile of length k can be black or white, with the restriction that the first tile cannot be black. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 73, 84.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.5 Logarithms and §8.1 Terminology, pp. 150, 264.
  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Boustrophedon transforms: A000734, A000752.
Range of values of A006519, A007875, A011782, A030001, A034444, A037445, A053644, and A054243.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a000079 = (2 ^)
    a000079_list = iterate (* 2) 1
    -- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
    
  • Magma
    [2^n: n in [0..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Magma
    [n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Maple
    A000079 := n->2^n; [ seq(2^n,n=0..50) ];
    isA000079 := proc(n)
        local fs;
        fs := numtheory[factorset](n) ;
        if n = 1 then
            true ;
        elif nops(fs) <> 1 then
            false;
        elif op(1,fs) = 2 then
            true;
        else
            false ;
        end if;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    Table[2^n, {n, 0, 50}]
    2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *)
    LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
  • Maxima
    A000079(n):=2^n$ makelist(A000079(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
    
  • PARI
    unimodal(n)=local(x,d,um,umc); umc=0; for (c=0,n!-1, x=numtoperm(n,c); d=0; um=1; for (j=2,n,if (x[j]x[j-1] && d==1,um=0); if (um==0,break)); if (um==1,print(x)); umc+=um); umc
    
  • Python
    def a(n): return 1<Michael S. Branicky, Jul 28 2022
    
  • Python
    def is_powerof2(n) -> bool: return n and (n & (n - 1)) == 0  # Peter Luschny, Apr 10 2025
  • Scala
    (List.fill(20)(2: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jan 16 2020
    
  • Scheme
    (define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
    

Formula

a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
a(n) = A173786(n, n)/2 = A173787(n + 1, n). - Reinhard Zumkeller, Feb 28 2010
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2*A001045(n) + A078008(n) = 3*A001045(n) + (-1)^n. - Paul Barry, Feb 20 2003
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
a(n) = A000005(A002110(n)). - Ivan N. Ianakiev, May 23 2016
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n) = 7*A077020(n)^2 + A077021(n)^2, n>=3. - Ralf Steiner, Aug 08 2021
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023

Extensions

Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014

A000035 Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Least significant bit of n, lsb(n).
Also decimal expansion of 1/99.
Also the binary expansion of 1/3. - Robert G. Wilson v, Sep 01 2015
a(n) = A134451(n) mod 2. - Reinhard Zumkeller, Oct 27 2007 [Corrected by Jianing Song, Nov 22 2019]
Characteristic function of odd numbers: a(A005408(n)) = 1, a(A005843(n)) = 0. - Reinhard Zumkeller, Sep 29 2008
A102370(n) modulo 2. - Philippe Deléham, Apr 04 2009
Base b expansion of 1/(b^2-1) for any b >= 2 is 0.0101... (A005563 has b^2-1). - Rick L. Shepherd, Sep 27 2009
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i] := 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,1). - Milan Janjic, Jan 24 2010
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the principal Dirichlet character of the reduced residue system mod 2 or mod 4 or mod 8 or mod 16 ...
Associated Dirichlet L-functions are for example L(2,chi) = Sum_{n>=1} a(n)/n^2 == A111003,
or L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.05179979... = 7*A002117/8,
or L(4,chi) = Sum_{n>=1} a(n)/n^4 = 1.014678... = A092425/96. (End)
Also parity of the nonnegative integers A001477. - Omar E. Pol, Jan 17 2012
a(n) = (4/n), where (k/n) is the Kronecker symbol. See the Eric Weisstein link. - Wolfdieter Lang, May 28 2013
Also the inverse binomial transform of A131577. - Paul Curtz, Nov 16 2016 [an observation forwarded by Jean-François Alcover]
The emanation sequence for the globe category. That is take the globe category, take the corresponding polynomial comonad, consider its carrier polynomial as a generating function, and take the corresponding sequence. - David Spivak, Sep 25 2020
For n > 0, a(n) is the alternating sum of the product of n increasing and n decreasing odd factors. For example, a(4) = 1*7 - 3*5 + 5*3 - 7*1 and a(5) = 1*9 - 3*7 + 5*5 - 7*3 + 9*1. - Charlie Marion, Mar 24 2022

Examples

			G.f. = x + x^3 + x^5 + x^7 + x^9 + x^11 + x^13 + x^15 + ... - _Michael Somos_, Feb 20 2024
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ones complement of A059841.
Cf. A053644 for most significant bit.
This is Guy Steele's sequence GS(1, 2) (see A135416).
Period k zigzag sequences: this sequence (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).
Cf. A154955 (Mobius transform), A131577 (binomial transform).
Cf. A111003 (Dgf at s=2), A233091 (Dgf at s=3), A300707 (Dgf at s=4).
Parity of A005811.

Programs

Formula

a(n) = (1 - (-1)^n)/2.
a(n) = n mod 2.
a(n) = 1 - a(n-1).
Multiplicative with a(p^e) = p mod 2. - David W. Wilson, Aug 01 2001
G.f.: x/(1-x^2). E.g.f.: sinh(x). - Paul Barry, Mar 11 2003
a(n) = (A000051(n) - A014551(n))/2. - Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2003
a(n) = ceiling((-2)^(-n-1)). - Reinhard Zumkeller, Apr 19 2005
Dirichlet g.f.: (1-1/2^s)*zeta(s). - R. J. Mathar, Mar 04 2011
a(n) = ceiling(n/2) - floor(n/2). - Arkadiusz Wesolowski, Sep 16 2012
a(n) = ceiling( cos(Pi*(n-1))/2 ). - Wesley Ivan Hurt, Jun 16 2013
a(n) = floor((n-1)/2) - floor((n-2)/2). - Mikael Aaltonen, Feb 26 2015
Dirichlet g.f.: L(chi(2),s) with chi(2) the principal Dirichlet character modulo 2. - Ralf Stephan, Mar 27 2015
a(n) = 0^^n = 0^(0^(0...)) (n times), where we take 0^0 to be 1. - Natan Arie Consigli, May 02 2015
Euler transform and inverse Moebius transform of length 2 sequence [0, 1]. - Michael Somos, Feb 20 2024

A139250 Toothpick sequence (see Comments lines for definition).

Original entry on oeis.org

0, 1, 3, 7, 11, 15, 23, 35, 43, 47, 55, 67, 79, 95, 123, 155, 171, 175, 183, 195, 207, 223, 251, 283, 303, 319, 347, 383, 423, 483, 571, 651, 683, 687, 695, 707, 719, 735, 763, 795, 815, 831, 859, 895, 935, 995, 1083, 1163, 1199, 1215, 1243, 1279, 1319, 1379
Offset: 0

Views

Author

Omar E. Pol, Apr 24 2008

Keywords

Comments

A toothpick is a copy of the closed interval [-1,1]. (In the paper, we take it to be a copy of the unit interval [-1/2, 1/2].)
We start at stage 0 with no toothpicks.
At stage 1 we place a toothpick in the vertical direction, anywhere in the plane.
In general, given a configuration of toothpicks in the plane, at the next stage we add as many toothpicks as possible, subject to certain conditions:
- Each new toothpick must lie in the horizontal or vertical directions.
- Two toothpicks may never cross.
- Each new toothpick must have its midpoint touching the endpoint of exactly one existing toothpick.
The sequence gives the number of toothpicks after n stages. A139251 (the first differences) gives the number added at the n-th stage.
Call the endpoint of a toothpick "exposed" if it does not touch any other toothpick. The growth rule may be expressed as follows: at each stage, new toothpicks are placed so their midpoints touch every exposed endpoint.
This is equivalent to a two-dimensional cellular automaton. The animations show the fractal-like behavior.
After 2^k - 1 steps, there are 2^k exposed endpoints, all located on two lines perpendicular to the initial toothpick. At the next step, 2^k toothpicks are placed on these lines, leaving only 4 exposed endpoints, located at the corners of a square with side length 2^(k-1) times the length of a toothpick. - M. F. Hasler, Apr 14 2009 and others. For proof, see the Applegate-Pol-Sloane paper.
If the third condition in the definition is changed to "- Each new toothpick must have at exactly one of its endpoints touching the midpoint of an existing toothpick" then the same sequence is obtained. The configurations of toothpicks are of course different from those in the present sequence. But if we start with the configurations of the present sequence, rotate each toothpick a quarter-turn, and then rotate the whole configuration a quarter-turn, we obtain the other configuration.
If the third condition in the definition is changed to "- Each new toothpick must have at least one of its endpoints touching the midpoint of an existing toothpick" then the sequence n^2 - n + 1 is obtained, because there are no holes left in the grid.
A "toothpick" of length 2 can be regarded as a polyedge with 2 components, both on the same line. At stage n, the toothpick structure is a polyedge with 2*a(n) components.
Conjecture: Consider the rectangles in the sieve (including the squares). The area of each rectangle (A = b*c) and the edges (b and c) are powers of 2, but at least one of the edges (b or c) is <= 2.
In the toothpick structure, if n >> 1, we can see some patterns that look like "canals" and "diffraction patterns". For example, see the Applegate link "A139250: the movie version", then enter n=1008 and click "Update". See also "T-square (fractal)" in the Links section. - Omar E. Pol, May 19 2009, Oct 01 2011
From Benoit Jubin, May 20 2009: The web page "Gallery" of Chris Moore (see link) has some nice pictures that are somewhat similar to the pictures of the present sequence. What sequences do they correspond to?
For a connection to Sierpiński triangle and Gould's sequence A001316, see the leftist toothpick triangle A151566.
Eric Rowland comments on Mar 15 2010 that this toothpick structure can be represented as a 5-state CA on the square grid. On Mar 18 2010, David Applegate showed that three states are enough. See links.
Equals row sums of triangle A160570 starting with offset 1; equivalent to convolving A160552: (1, 1, 3, 1, 3, 5, 7, ...) with (1, 2, 2, 2, ...). Equals A160762: (1, 0, 2, -2, 2, 2, 2, -6, ...) convolved with 2*n - 1: (1, 3, 5, 7, ...). Starting with offset 1 equals A151548: [1, 3, 5, 7, 5, 11, 17, 15, ...] convolved with A078008 signed (A151575): [1, 0, 2, -2, 6, -10, 22, -42, 86, -170, 342, ...]. - Gary W. Adamson, May 19 2009, May 25 2009
For a three-dimensional version of the toothpick structure, see A160160. - Omar E. Pol, Dec 06 2009
From Omar E. Pol, May 20 2010: (Start)
Observation about the arrangement of rectangles:
It appears there is a nice pattern formed by distinct modular substructures: a central cross surrounded by asymmetrical crosses (or "hidden crosses") of distinct sizes and also by "nuclei" of crosses.
Conjectures: after 2^k stages, for k >= 2, and for m = 1 to k - 1, there are 4^(m-1) substructures of size s = k - m, where every substructure has 4*s rectangles. The total number of substructures is equal to (4^(k-1)-1)/3 = A002450(k-1). For example: If k = 5 (after 32 stages) we can see that:
a) There is a central cross, of size 4, with 16 rectangles.
b) There are four hidden crosses, of size 3, where every cross has 12 rectangles.
c) There are 16 hidden crosses, of size 2, where every cross has 8 rectangles.
d) There are 64 nuclei of crosses, of size 1, where every nucleus has 4 rectangles.
Hence the total number of substructures after 32 stages is equal to 85. Note that in every arm of every substructure, in the potential growth direction, the length of the rectangles are the powers of 2. (See illustrations in the links. See also A160124.) (End)
It appears that the number of grid points that are covered after n-th stage of the toothpick structure, assuming the toothpicks have length 2*k, is equal to (2*k-2)*a(n) + A147614(n), k > 0. See the formulas of A160420 and A160422. - Omar E. Pol, Nov 13 2010
Version "Gullwing": on the semi-infinite square grid, at stage 1, we place a horizontal "gull" with its vertices at [(-1, 2), (0, 1), (1, 2)]. At stage 2, we place two vertical gulls. At stage 3, we place four horizontal gulls. a(n) is also the number of gulls after n-th stage. For more information about the growth of gulls see A187220. - Omar E. Pol, Mar 10 2011
From Omar E. Pol, Mar 12 2011: (Start)
Version "I-toothpick": we define an "I-toothpick" to consist of two connected toothpicks, as a bar of length 2. An I-toothpick with length 2 is formed by two toothpicks with length 1. The midpoint of an I-toothpick is touched by its two toothpicks. a(n) is also the number of I-toothpicks after n-th stage in the I-toothpick structure. The I-toothpick structure is essentially the original toothpick structure in which every toothpick is replaced by an I-toothpick. Note that in the physical model of the original toothpick structure the midpoint of a wooden toothpick of the new generation is superimposed on the endpoint of a wooden toothpick of the old generation. However, in the physical model of the I-toothpick structure the wooden toothpicks are not overlapping because all wooden toothpicks are connected by their endpoints. For the number of toothpicks in the I-toothpick structure see A160164 which also gives the number of gullwing in a gullwing structure because the gullwing structure of A160164 is equivalent to the I-toothpick structure. It also appears that the gullwing sequence A187220 is a supersequence of the original toothpick sequence A139250 (this sequence).
For the connection with the Ulam-Warburton cellular automaton see the Applegate-Pol-Sloane paper and see also A160164 and A187220.
(End)
A version in which the toothpicks are connected by their endpoints: on the semi-infinite square grid, at stage 1, we place a vertical toothpick of length 1 from (0, 0). At stage 2, we place two horizontal toothpicks from (0,1), and so on. The arrangement looks like half of the I-toothpick structure. a(n) is also the number of toothpicks after the n-th. - Omar E. Pol, Mar 13 2011
Version "Quarter-circle" (or Q-toothpick): a(n) is also the number of Q-toothpicks after the n-th stage in a Q-toothpick structure in the first quadrant. We start from (0,1) with the first Q-toothpick centered at (1, 1). The structure is asymmetric. For a similar structure but starting from (0, 0) see A187212. See A187210 and A187220 for more information. - Omar E. Pol, Mar 22 2011
Version "Tree": It appears that a(n) is also the number of toothpicks after the n-th stage in a toothpick structure constructed following a special rule: the toothpicks of the new generation have length 4 when they are placed on the infinite square grid (note that every toothpick has four components of length 1), but after every stage, one (or two) of the four components of every toothpick of the new generation is removed, if such component contains an endpoint of the toothpick and if such endpoint is touching the midpoint or the endpoint of another toothpick. The truncated endpoints of the toothpicks remain exposed forever. Note that there are three sizes of toothpicks in the structure: toothpicks of lengths 4, 3 and 2. A159795 gives the total number of components in the structure after the n-th stage. A153006 (the corner sequence of the original version) gives 1/4 of the total of components in the structure after the n-th stage. - Omar E. Pol, Oct 24 2011
From Omar E. Pol, Sep 16 2012: (Start)
It appears that a(n)/A147614(n) converges to 3/4.
It appears that a(n)/A160124(n) converges to 3/2.
It appears that a(n)/A139252(n) converges to 3.
Also:
It appears that A147614(n)/A160124(n) converges to 2.
It appears that A160124(n)/A139252(n) converges to 2.
It appears that A147614(n)/A139252(n) converges to 4.
(End)
It appears that a(n) is also the total number of ON cells after n-th stage in a quadrant of the structure of the cellular automaton described in A169707 plus the total number of ON cells after n+1 stages in a quadrant of the mentioned structure, without its central cell. See the illustration of the NW-NE-SE-SW version in A169707. See also the connection between A160164 and A169707. - Omar E. Pol, Jul 26 2015
On the infinite Cairo pentagonal tiling consider the symmetric figure formed by two non-adjacent pentagons connected by a line segment joining two trivalent nodes. At stage 1 we start with one of these figures turned ON. The rule for the next stages is that the concave part of the figures of the new generation must be adjacent to the complementary convex part of the figures of the old generation. a(n) gives the number of figures that are ON in the structure after n-th stage. A160164(n) gives the number of ON cells in the structure after n-th stage. - Omar E. Pol, Mar 29 2018
From Omar E. Pol, Mar 06 2019: (Start)
The "word" of this sequence is "ab". For further information about the word of cellular automata see A296612.
Version "triangular grid": a(n) is also the total number of toothpicks of length 2 after n-th stage in the toothpick structure on the infinite triangular grid, if we use only two of the three axes. Otherwise, if we use the three axes, so we have the sequence A296510 which has word "abc".
The normal toothpick structure can be considered a superstructure of the Ulam-Warburton celular automaton since A147562(n) equals here the total number of "hidden crosses" after 4*n stages, including the central cross (beginning to count the crosses when their "nuclei" are totally formed with 4 quadrilaterals). Note that every quadrilateral in the structure belongs to a "hidden cross".
Also, the number of "hidden crosses" after n stages equals the total number of "flowers with six petals" after n-th stage in the structure of A323650, which appears to be a "missing link" between this sequence and A147562.
Note that the location of the "nuclei of the hidden crosses" is very similar (essentially the same) to the location of the "flowers with six petals" in the structure of A323650 and to the location of the "ON" cells in the version "one-step bishop" of the Ulam-Warburton cellular automaton of A147562. (End)
From Omar E. Pol, Nov 27 2020: (Start)
The simplest substructures are the arms of the hidden crosses. Each closed region (square or rectangle) of the structure belongs to one of these arms. The narrow arms have regions of area 1, 2, 4, 8, ... The broad arms have regions of area 2, 4, 8, 16 , ... Note that after 2^k stages, with k >= 3, the narrow arms of the main hidden crosses in each quadrant frame the size of the toothpick structure after 2^(k-1) stages.
Another kind of substructure could be called "bar chart" or "bar graph". This substructure is formed by the rectangles and squares of width 2 that are adjacent to any of the four sides of the toothpick structure after 2^k stages, with k >= 2. The height of these successive regions gives the first 2^(k-1) - 1 terms from A006519. For example: if k = 5 the respective heights after 32 stages are [1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1]. The area of these successive regions gives the first 2^(k-1) - 1 terms of A171977. For example: if k = 5 the respective areas are [2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2].
For a connection to Mersenne primes (A000668) and perfect numbers (A000396) see A153006.
For a representation of the Wagstaff primes (A000979) using the toothpick structure see A194810.
For a connection to stained glass windows and a hidden curve see A336532. (End)
It appears that the graph of a(n) bears a striking resemblance to the cumulative distribution function F(x) for X the random variable taking values in [0,1], where the binary expansion of X is given by a sequence of independent coin tosses with probability 3/4 of being 1 at each bit. It appears that F(n/2^k)*(2^(2k+1)+1)/3 approaches a(n) for k large. - James Coe, Jan 10 2022

Examples

			a(10^10) = 52010594272060810683. - _David A. Corneth_, Mar 26 2015
		

References

  • D. Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191
  • L. D. Pryor, The Inheritance of Inflorescence Characters in Eucalyptus, Proceedings of the Linnean Society of New South Wales, V. 79, (1954), p. 81, 83.
  • Richard P. Stanley, Enumerative Combinatorics, volume 1, second edition, chapter 1, exercise 95, figure 1.28, Cambridge University Press (2012), p. 120, 166.

Crossrefs

Programs

  • Maple
    G := (x/((1-x)*(1+2*x))) * (1 + 2*x*mul(1+x^(2^k-1)+2*x^(2^k),k=0..20)); # N. J. A. Sloane, May 20 2009, Jun 05 2009
    # From N. J. A. Sloane, Dec 25 2009: A139250 is T, A139251 is a.
    a:=[0,1,2,4]; T:=[0,1,3,7]; M:=10;
    for k from 1 to M do
    a:=[op(a),2^(k+1)];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    for j from 1 to 2^(k+1)-1 do
    a:=[op(a), 2*a[j+1]+a[j+2]];
    T:=[op(T),T[nops(T)]+a[nops(a)]];
    od: od: a; T;
  • Mathematica
    CoefficientList[ Series[ (x/((1 - x)*(1 + 2x))) (1 + 2x*Product[1 + x^(2^k - 1) + 2*x^(2^k), {k, 0, 20}]), {x, 0, 53}], x] (* Robert G. Wilson v, Dec 06 2010 *)
    a[0] = 0; a[n_] := a[n] = Module[{m, k}, m = 2^(Length[IntegerDigits[n, 2]] - 1); k = (2m^2+1)/3; If[n == m, k, k + 2 a[n - m] + a[n - m + 1] - 1]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 06 2018, after David A. Corneth *)
  • PARI
    A139250(n,print_all=0)={my(p=[], /* set of "used" points. Points are written as complex numbers, c=x+iy. Toothpicks are of length 2 */
    ee=[[0,1]], /* list of (exposed) endpoints. Exposed endpoints are listed as [c,d] where c=x+iy is the position of the endpoint, and d (unimodular) is the direction */
    c,d,ne, cnt=1); print_all && print1("0,1"); n<2 && return(n);
    for(i=2,n, p=setunion(p, Set(Mat(ee~)[,1])); /* add endpoints (discard directions) from last move to "used" points */
    ne=[]; /* new (exposed) endpoints */
    for( k=1, #ee, /* add endpoints of new toothpicks if not among the used points */
    setsearch(p, c=ee[k][1]+d=ee[k][2]*I) || ne=setunion(ne,Set([[c,d]]));
    setsearch(p, c-2*d) || ne=setunion(ne,Set([[c-2*d,-d]]));
    ); /* using Set() we have the points sorted, so it's easy to remove those which finally are not exposed because they touch a new toothpick */
    forstep( k=#ee=eval(ne), 2, -1, ee[k][1]==ee[k-1][1] && k-- && ee=vecextract(ee,Str("^"k"..",k+1)));
    cnt+=#ee; /* each exposed endpoint will give a new toothpick */
    print_all && print1(","cnt));cnt} \\ M. F. Hasler, Apr 14 2009
    
  • PARI
    \\works for n > 0
    a(n) = {my(k = (2*msb(n)^2 + 1) / 3); if(n==msb(n),k , k + 2*a(n-msb(n)) + a(n - msb(n) + 1) - 1)}
    msb(n)=my(t=0);while(n>>t>0,t++);2^(t-1)\\ David A. Corneth, Mar 26 2015
    
  • Python
    def msb(n):
        t = 0
        while n>>t > 0:
            t += 1
        return 2**(t - 1)
    def a(n):
        k = (2 * msb(n)**2 + 1) / 3
        return 0 if n == 0 else k if n == msb(n) else k + 2*a(n - msb(n)) + a(n - msb(n) + 1) - 1
    [a(n) for n in range(101)]  # Indranil Ghosh, Jul 01 2017, after David A. Corneth's PARI script

Formula

a(2^k) = A007583(k), if k >= 0.
a(2^k-1) = A006095(k+1), if k >= 1.
a(A000225(k)) - a((A000225(k)-1)/2) = A006516(k), if k >= 1.
a(A000668(k)) - a((A000668(k)-1)/2) = A000396(k), if k >= 1.
G.f.: (x/((1-x)*(1+2*x))) * (1 + 2*x*Product_{k>=0} (1 + x^(2^k-1) + 2*x^(2^k))). - N. J. A. Sloane, May 20 2009, Jun 05 2009
One can show that lim sup a(n)/n^2 = 2/3, and it appears that lim inf a(n)/n^2 is 0.451... - Benoit Jubin, Apr 15 2009 and Jan 29 2010, N. J. A. Sloane, Jan 29 2010
Observation: a(n) == 3 (mod 4) for n >= 2. - Jaume Oliver Lafont, Feb 05 2009
a(2^k-1) = A000969(2^k-2), if k >= 1. - Omar E. Pol, Feb 13 2010
It appears that a(n) = (A187220(n+1) - 1)/2. - Omar E. Pol, Mar 08 2011
a(n) = 4*A153000(n-2) + 3, if n >= 2. - Omar E. Pol, Oct 01 2011
It appears that a(n) = A160552(n) + (A169707(n) - 1)/2, n >= 1. - Omar E. Pol, Feb 15 2015
It appears that a(n) = A255747(n) + A255747(n-1), n >= 1. - Omar E. Pol, Mar 16 2015
Let n = msb(n) + j where msb(n) = A053644(n) and let a(0) = 0. Then a(n) = (2 * msb(n)^2 + 1)/3 + 2 * a(j) + a(j+1) - 1. - David A. Corneth, Mar 26 2015
It appears that a(n) = (A169707(n) - 1)/4 + (A169707(n+1) - 1)/4, n >= 1. - Omar E. Pol, Jul 24 2015

Extensions

Verified and extended, a(49)-a(53), using the given PARI code by M. F. Hasler, Apr 14 2009
Further edited by N. J. A. Sloane, Jan 28 2010

A029837 Binary order of n: log_2(n) rounded up to next integer.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Keywords

Comments

Or, ceiling(log_2(n)).
Worst-case cost of binary search.
Equal to number of binary digits in n unless n is a power of 2 when it is one less.
Thus a(n) gives the length of the binary representation of n - 1 (n >= 2), which is also A070939(n - 1).
Let x(0) = n > 1 and x(k + 1) = x(k) - floor(x(k)/2), then a(n) is the smallest integer such that x(a(n)) = 1. - Benoit Cloitre, Aug 29 2002
Also number of division steps when going from n to 1 by process of adding 1 if odd, or dividing by 2 if even. - Cino Hilliard, Mar 25 2003
Number of ways to write n as (x + 2^y), x >= 0. Number of ways to write n + 1 as 2^x + 3^y (cf. A004050). - Benoit Cloitre, Mar 29 2003
The minimum number of cuts for dividing an object into n (possibly unequal) pieces. - Karl Ove Hufthammer (karl(AT)huftis.org), Mar 29 2010
Partial sums of A209229; number of powers of 2 not greater than n. - Reinhard Zumkeller, Mar 07 2012

Examples

			a(1) = 0, since log_2(1) = 0.
a(2) = 1, since log_2(2) = 1.
a(3) = 2, since log_2(3) = 1.58...
a(n) = 7 for n = 65, 66, ..., 127, 128.
G.f. = x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 3*x^8 + 4*x^9 + ... - _Michael Somos_, Jun 02 2019
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, p. 70.
  • G. J. E. Rawlins, Compared to What? An Introduction to the Analysis of Algorithms, W. H. Freeman, 1992; see pp. 108, 118.

Crossrefs

Partial sums of A036987.
Used for several definitions: A029827, A036378-A036390. Partial sums: A001855.

Programs

  • Haskell
    a029837 n = a029837_list !! (n-1)
    a029837_list = scanl1 (+) a209229_list
    -- Reinhard Zumkeller, Mar 07 2012
    (Common Lisp) (defun A029837 (n) (integer-length (1- n))) ; James Spahlinger, Oct 15 2012
    
  • Magma
    [Ceiling(Log(2, n)): n in [1..100]]; // Vincenzo Librandi, Jun 14 2019
    
  • Maple
    a:= n-> (p-> p+`if`(2^pAlois P. Heinz, Mar 18 2013
  • Mathematica
    a[n_] := Ceiling[Log[2, n]]; Array[a, 105] (* Robert G. Wilson v, Dec 09 2005 *)
    Table[IntegerLength[n - 1, 2], {n, 1, 105}] (* Peter Luschny, Dec 02 2017 *)
    a[n_] := If[n < 1, 0, BitLength[n - 1]]; (* Michael Somos, Jul 10 2018 *)
    Join[{0}, IntegerLength[Range[130], 2]] (* Vincenzo Librandi, Jun 14 2019 *)
  • PARI
    {a(n) = if( n<1, 0, ceil(log(n) / log(2)))};
    
  • PARI
    /* Set p = 1, then: */
    xpcount(n,p) = for(x=1, n, p1 = x; ct=0; while(p1>1, if(p1%2==0,p1/=2; ct++,p1 = p1*p+1)); print1(ct, ", "))
    
  • PARI
    {a(n) = if( n<2, 0, exponent(n-1)+1)}; /* Michael Somos, Jul 10 2018 */
    
  • Python
    def A029837(n):
        s = bin(n)[2:]
        return len(s) - (1 if s.count('1') == 1 else 0) # Chai Wah Wu, Jul 09 2020
    
  • Python
    def A029837(n): return (n-1).bit_length() # Chai Wah Wu, Jun 30 2022
  • Scala
    (1 to 80).map(n => Math.ceil(Math.log(n)/Math.log(2)).toInt) // Alonso del Arte, Feb 19 2020
    

Formula

a(n) = ceiling(log_2(n)).
a(1) = 0; for n > 1, a(2n) = a(n) + 1, a(2n + 1) = a(n) + 1. Alternatively, a(1) = 0; for n > 1, a(n) = a(ceiling(n/2)) + 1. [corrected by Ilya Gutkovskiy, Mar 21 2020]
a(n) = k such that n^(1/k - 1) > 2 > n^(1/k), or the least value of k for which floor n^(1/k) = 1. a(n) = k for all n such that 2^(k - 1) < n < 2^k. - Amarnath Murthy, May 06 2001
G.f.: x/(1 - x) * Sum_{k >= 0} x^2^k. - Ralf Stephan, Apr 13 2002
A062383(n-1) = 2^a(n). - Johannes W. Meijer, Jul 06 2009
a(n+1) = -Sum_{k = 1..n} mu(2*k)*floor(n/k). - Benoit Cloitre, Oct 21 2009
a(n+1) = A113473(n). - Michael Somos, Jun 02 2019

Extensions

Additional comments from Daniele Parisse
More terms from Michael Somos, Aug 02 2002
Showing 1-10 of 118 results. Next