A217298
Triangle read by columns: T(n,k) = number of AVL trees of height n with k (leaf-) nodes, k>=1, A029837(k)<=n<A072649(k).
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 4, 1, 16, 32, 44, 60, 70, 56, 128, 28, 448, 8, 864, 1, 1552, 2720, 4288, 6312, 9004, 11992, 4096, 14372, 22528, 15400, 67584, 14630, 159744, 11968, 334080, 8104, 644992, 4376, 1195008, 1820, 2158912, 560, 3811904, 120, 6617184, 16, 11307904
Offset: 1
There are 2 AVL trees of height 2 with 3 (leaf-) nodes:
o o
/ \ / \
o N N o
/ \ / \
N N N N
Triangle begins:
1
. 1
. . 2 1
. . . . 4 6 4 1
. . . . . . . 16 32 44 60 70 56 28 8 1
. . . . . . . . . . . . 128 448 864 1552 2720 ...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 239, Eq 79, A_5.
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8).
- Alois P. Heinz, Columns k = 1..1500, flattened
- Ralf Hinze, Functional Pearls: Purely functional 1-2 brother trees, Journal of Functional Programming, 19(6):633-644, 2009, DOI: 10.1017/S0956796809007333.
- R. C. Richards, Shape distribution of height-balanced trees, Info. Proc. Lett., 17 (1983), 17-20.
- Wikipedia, AVL tree
- Index entries for sequences related to rooted trees
Triangle read by rows gives:
A143897.
First elements of rows give:
A174677.
A045716
a(n) is the binary order (A029837) of the n-th primorial number, A002110(n).
Original entry on oeis.org
1, 3, 5, 8, 12, 15, 19, 24, 28, 33, 38, 43, 49, 54, 60, 65, 71, 77, 83, 89, 96, 102, 108, 115, 121, 128, 135, 141, 148, 155, 162, 169, 176, 183, 190, 198, 205, 212, 220, 227, 235, 242, 250, 257, 265, 273, 280, 288, 296, 304, 312, 319, 327, 335, 343, 351, 359
Offset: 1
The sixth primorial number is 2*3*5*7*11*13 = 30030, which is in the interval [16385, 32768] = [2^14 + 1, 2^15], so its binary order is a(6)=15. [corrected by _Jon E. Schoenfield_, May 13 2018]
A036382
Odd split numbers: have a nontrivial factorization n=ab with a and b coprime, so that L(a) + L(b) <= L(n), where L(x) = A029837(x) = ceiling(log_2(x)).
Original entry on oeis.org
21, 33, 35, 39, 65, 69, 75, 77, 87, 91, 93, 105, 129, 133, 135, 141, 143, 145, 147, 155, 159, 161, 165, 175, 177, 183, 189, 195, 203, 217, 259, 261, 265, 267, 273, 275, 279, 285, 287, 291, 295, 297, 299, 301, 303, 305, 309, 315, 319, 321, 325, 327, 329, 339
Offset: 1
s = 39 is a split number since s = 39 = 3*13, gcd(3,13)=1 and L(3) + L(13) = 2 + 4 = L(39).
-
Select[Range[1, 340, 2], Function[n, Total@ Boole@ Map[And[Total@ Ceiling@ Log2@ # <= Ceiling@ Log2@ n, CoprimeQ @@ #] &, Map[{#, n/#} &, Rest@ Take[#, Ceiling[Length[#]/2]]]] > 0 &@ Divisors@ n]] (* Michael De Vlieger, Mar 03 2017 *)
A036451
Maximal value of d(x) (the number of divisors of x, A000005) if the binary order (see A029837) of x, the value g(x) = n.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 120, 144, 168, 200, 240, 288, 360, 432, 504, 600, 720, 864, 1008, 1152, 1344, 1600, 1920, 2304, 2688, 3072, 3584, 4096, 4800, 5760, 6720, 7680, 8640, 10080, 11520, 13824, 16128, 18432, 20736, 23040
Offset: 0
In the range of g(x) <= 5, the values of d(x) can be: 1, 2, 3, 4, 5, 6, 8 of which 8 is the maximal, so a(n) = a(g(x)) = 8.
-
Max /@ Table[DivisorSigma[0, Floor[2^(n - 1) + k]], {n, 0, 22}, {k, Ceiling[2^(n - 1)]}] (* Michael De Vlieger, May 10 2017 *)
A036470
a(n) is the number of distinct possible values of d(k), the number of divisors of k, among numbers k whose binary order (A029837) does not exceed n.
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 11, 12, 16, 17, 23, 26, 31, 37, 43, 48, 58, 64, 74, 82, 94, 106, 122, 133, 146, 165, 183, 202, 224, 244, 267, 294, 325, 355, 389, 416, 453, 500, 541, 584, 636, 680, 737, 795, 859, 922, 995, 1068, 1149, 1233, 1324, 1412, 1523, 1616, 1731, 1845
Offset: 0
If 1 <= k <= 128, i.e., the binary order of k is g(k) <= 7, then d(k) takes 12 values {1,2,3,4,5,6,7,8,9,10,12,16}; thus a(7) = 12. The maximal value (16) appears as a(7) in A036451.
A036761
Number of refactorable integers (A033950) of binary order (A029837) n.
Original entry on oeis.org
1, 1, 0, 1, 2, 2, 4, 8, 13, 22, 39, 77, 137, 254, 459, 889, 1665, 3175, 6041, 11619, 22319, 42979, 83123, 160649, 311826, 605225, 1176998, 2291702, 4466923, 8716126, 17023771, 33279942, 65109458, 127484313, 249783733, 489738130, 960801221, 1886039740
Offset: 0
{1} has binary order 0, {2} has binary order 1, no term has binary order 2, {8} has binary order 3, {9,12} have binary order 4, {18,24} have binary order 5, ...
The 8 numbers, between 65 and 128 (with binary order 7) which are divided by d(x) (A000005) are 72,80,84,88,96,104,108,128, so a(7)=8.
-
with(numtheory): A036761 := proc(n) local ct,k,lim: if(n=0)then return 1: else ct:=0: lim:=2^n: for k from 2^(n-1)+1 to lim do if(k mod tau(k) = 0)then ct:=ct+1: fi: od: return ct: fi: end: seq(A036761(n),n=0..10); # Nathaniel Johnston, May 04 2011
-
Table[Count[Range[2^(n - 1) + 1, 2^(n)], k_ /; Divisible[k, DivisorSigma[0, k]]] + Boole[n == 0], {n, 0, 22}] (* Michael De Vlieger, May 20 2017 *)
A228153
Triangle read by columns: T(n,k) = maximal external path length of AVL trees of height n with k (leaf-) nodes, k>=1, A029837(k)<=n<A072649(k).
Original entry on oeis.org
0, 2, 5, 8, 12, 16, 20, 24, 25, 30, 35, 40, 44, 49, 50, 54, 56, 59, 62, 64, 68, 73, 79, 85, 91, 97, 96, 102, 103, 107, 110, 113, 117, 119, 123, 125, 130, 131, 137, 136, 144, 142, 151, 148, 157, 154, 163, 160, 170, 177, 184, 180, 191, 188, 197, 196, 204, 204
Offset: 1
In the (two) AVL trees of height 2 the 3 external nodes (leaves) have once depth 1 and twice depth 2:
o o
/ \ / \
o 1 1 o
/ \ / \
2 2 2 2
so that the sum of depths is 5 for both trees.
Triangle begins:
0
. 2
. . 5 8
. . . . 12 16 20 24
. . . . . . . 25 30 35 40 44 49 54 59 64
. . . . . . . . . . . . 50 56 62 68 73 79 85 91 97 102 ...
. . . . . . . . . . . . . . . . . . . . 96 103 ...
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8).
Triangle read by rows gives:
A228152.
Row maxima give: n*2^n =
A036289(n).
Number of AVL trees read by rows gives:
A143897.
The infimum of all external path lengths of binary trees with k (leaf-) nodes is:
A003314(k) for k>0.
Number of AVL trees read by columns gives:
A217298.
-
maxNods = 100; Clear[T, A029837, A072649, A036289, A228155]; T[0, 1] = 0; A029837[1] = 0; A072649[1] = 1; A228155[1] = 0; For[k = 2, k <= maxNods, k++, A029837[k] = maxNods; A072649[k] = 0; A228155u = 0; For[kL = 1, kL <= Floor[k/2], kL++, For[hL = A029837[kL], hL <= A072649[kL] - 1, hL++, For[hR = Max[hL - 1, A029837[k - kL]], hR <= Min[hL + 1, A072649[k - kL] - 1], hR++, maxDepthSum = k + T[hL, kL] + T[hR, k - kL]; A228155u = Max[maxDepthSum, A228155u]; h = Max[hL, hR] + 1; If[ !IntegerQ[T[h, k]], T[h, k] = maxDepthSum, T[h, k] = Max[maxDepthSum, T[h, k]]]; A029837[k] = Min[h, A029837[k]]; If[ !IntegerQ[A036289[h]], A036289[h] = maxDepthSum, A036289[h] = Max[maxDepthSum, A036289[h]]]; A072649[k] = Max[h + 1, A072649[k]]; ]]]; A228155[k] = A228155u]; k =.; Table[ Select[ Table[T[n, k], {n, A029837[k], A072649[k] - 1}], IntegerQ], {k, 1, maxNods}] // Flatten (* Jean-François Alcover, Aug 19 2013, translated and adapted from Herbert Eberle's MuPAD program *)
-
maxNods:=100: // max number of leaves (= external nodes)
// Triangle T for all AVL trees with <= maxNods leaves:
delete T:
// table T indexed [h, k] (h=height, k=number of leaves):
T[0, 1]:=0:
// A029837 indexed [k], min height of tree with k leaves:
A029837:=array(1..maxNods): A029837[1]:=0:
// A072649 indexed [k], 1+max height of AVL tree with k leaves:
A072649:=array(1..maxNods): A072649[1]:=1:
// A036289 indexed [h], max depthsum of all height h AVL trees:
A036289:=array(1..maxNods):
// A228155 indexed [k], max depthsum of all AVL trees with k leaves:
A228155:=array(1..maxNods): A228155[1]:=0:
for k from 2 to maxNods do:
A029837[k]:=maxNods: // try infinity for the min height
A072649[k]:=0:
A228155u:=0:
// Put together 2 AVL trees:
for kL from 1 to floor(k/2) do:
// kL leaves in the left tree
for hL from A029837[kL] to A072649[kL]-1 do:
for hR from max(hL-1, A029837[k-kL])
to min(hL+1, A072649[k-kL]-1) do:
// k-kL leaves in the right subtree
maxDepthSum:=T[hL, kL]+T[hR, k-kL]+k:
A228155u:=max(maxDepthSum, A228155u):
h:=max(hL, hR)+1:
if type(T[h, k]) <> DOM_INT then // T[h, k] uninit
T[h, k]:=maxDepthSum:
else
T[h, k]:=max(maxDepthSum, T[h, k]):
end_if:
A029837[k]:=min(h, A029837[k]):
if type(A036289[h]) <> DOM_INT then
A036289[h]:=maxDepthSum:
else
A036289[h]:=max(maxDepthSum, A036289[h]):
end_if:
A072649[k]:=max(h+1, A072649[k]):
end_for: // hR
end_for: // hL
end_for: // kL
A228155[k]:=A228155u:
end_for: // k
A036493
Largest number having binary order n (A029837) and of which the number of divisors is maximal in that range of g(k) = n.
Original entry on oeis.org
1, 2, 4, 8, 12, 30, 60, 120, 240, 504, 840, 1680, 3960, 7560, 15120, 32760, 65520, 131040, 262080, 498960, 997920, 1965600, 3603600, 7207200, 14414400, 32432400, 64864800, 122522400, 245044800, 514594080, 1029188160, 2095133040, 4227022800, 8454045600
Offset: 0
For n = 9, k is in {257, 512}, max(d(k)) = 24 (see A036451); this holds for four different numbers (360, 420, 480, and 504); a(9) = 504 since it is the largest.
-
{1}~Join~Table[Max@ MaximalBy[Range[2^(n - 1) + 1, 2^n], DivisorSigma[0, #] &], {n, 24}] (* Michael De Vlieger, Aug 01 2017 *)
A306297
Number T(n,k) of subsets of [n] with k binary carry-connected components; triangle T(n,k), n >= 0, 0 <= k <= A029837(n+1), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 1, 1, 7, 7, 1, 1, 19, 11, 1, 1, 47, 15, 1, 1, 111, 15, 1, 1, 112, 126, 16, 1, 1, 324, 166, 20, 1, 1, 776, 222, 24, 1, 1, 1736, 286, 24, 1, 1, 3708, 358, 28, 1, 1, 7740, 422, 28, 1, 1, 15868, 486, 28, 1, 1, 32252, 486, 28, 1, 1, 32253, 32738, 514, 29, 1
Offset: 0
T(4,0) = 1: {}.
T(4,1) = 7: 1, 2, 3, 13, 23, 123, 4.
T(4,2) = 7: 1|2, 1|4, 2|4, 3|4, 13|4, 23|4, 123|4.
T(4,3) = 1: 1|2|4.
(The connected components are shown as blocks of a set partition.)
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 1;
1, 6, 1;
1, 7, 7, 1;
1, 19, 11, 1;
1, 47, 15, 1;
1, 111, 15, 1;
1, 112, 126, 16, 1;
1, 324, 166, 20, 1;
1, 776, 222, 24, 1;
1, 1736, 286, 24, 1;
1, 3708, 358, 28, 1;
...
Number of terms in row n gives
A070941.
-
h:= proc(n, s) local i, m; m:= n;
for i in s do m:= Bits[Or](m, i) od; {m}
end:
g:= (n, s)-> (w-> `if`(w={}, s union {n}, s minus w union
h(n, w)))(select(x-> Bits[And](n, x)>0, s)):
b:= proc(n, s) option remember; `if`(n=0, x^nops(s),
b(n-1, s)+b(n-1, g(n, s)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, {})):
seq(T(n), n=0..23);
-
h[n_, s_List] := Module[{i, m = n}, For[i = 1, i <= Length[s], i++, m = BitOr[m, s[[i]]]]; m];
g[n_, s_List] := Function[w, If[w == {}, s ~Union~ {n}, s ~Complement~ w ~Union~ {h[n, w]}]][Select[s, BitAnd[n, #] > 0&]];
b[n_, s_List] := b[n, s] = If[n == 0, x^Length[s], b[n - 1, s] + b[n - 1, g[n, s]]];
T[n_] := CoefficientList[b[n, {}], x];
T /@ Range[0, 23] // Flatten (* Jean-François Alcover, Apr 18 2021, after Alois P. Heinz *)
A036385
Number of split numbers (A036382) with binary order (A029837) n, i.e., those in interval [ 2^(n-1), 2^n ].
Original entry on oeis.org
0, 0, 1, 3, 8, 18, 39, 81, 167, 342, 702, 1423, 2902, 5871, 11888, 24027, 48519, 97900, 197375, 397713, 800877, 1612007, 3243196, 6522366, 13112877, 26354391, 52951859, 106364992, 213608176, 428885665, 860959606
Offset: 1
Out of the 128 numbers with the binary order 8, there are 81 split numbers (odd + even); so a(7)=81.
Showing 1-10 of 261 results.
Comments