cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A020522 a(n) = 4^n - 2^n.

Original entry on oeis.org

0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length 2*n+2 between any two diametrically opposite vertices of the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
If we consider a(4*k+2), then 2^4 == 3^4 == 3 (mod 13); 2^(4*k+2) + 3^(4*k+2) == 3^k*(4+9) == 3*0 == 0 (mod 13). So a(4*k+2) can never be prime. - Jose Brox, Dec 27 2005
If k is odd, then a(n*k) is divisible by a(n), since: a(n*k) = (2^n)^k + (3^n)^k = (2^n + 3^n)*((2^n)^(k-1) - (2^n)^(k-2) (3^n) + - ... + (3^n)^(k-1)). So the only possible primes in the sequence are a(0) and a(2^n) for n>=1. I've checked that a(2^n) is composite for 3 <= n <= 15. As with Fermat primes, a probabilistic argument suggests that there are only finitely many primes in the sequence. - Dean Hickerson, Dec 27 2005
Let x,y,z be elements from some power set P(n), i.e., the power set of a set of n elements. Define a function f(x,y,z) in the following manner: f(x,y,z) = 1 if x is a subset of y and y is a subset of z and x does not equal z; f(x,y,z) = 0 if x is not a subset of y or y is not a subset of z or x equals z. Now sum f(x,y,z) for all x,y,z of P(n). This gives a(n). - Ross La Haye, Dec 26 2005
Number of monic (irreducible) polynomials of degree 1 over GF(2^n). - Max Alekseyev, Jan 13 2006
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the number of (x,y) of B for which x does not equal y. - Ross La Haye, Jan 02 2008
For n>1: central terms of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
Pronic numbers of the form: (2^n - 1)*2^n, which is the n-th Mersenne number times 2^n, see A000225 and A002378. - Fred Daniel Kline, Nov 30 2013
Indices where records of A037870 occur. - Philippe Beaudoin, Sep 03 2014
Half the total edge length for a minimum linear arrangement of a hypercube of dimension n. (See Harper's paper below for proof). - Eitan Frachtenberg, Apr 07 2017
Number of pairs in GF(2)^{n+1} whose dot product is 1. - Christopher Purcell, Dec 11 2021

Examples

			n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
		

Crossrefs

Ratio of successive terms of A028365.

Programs

Formula

From Herbert Kociemba, Jul 02 2004: (Start)
G.f.: 2*x/((-1 + 2*x)*(-1 + 4*x)).
a(n) = 6*a(n-1) - 8*a(n-2). (End)
E.g.f.: exp(4*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
From Reinhard Zumkeller, Feb 07 2006, Jaroslav Krizek, Aug 02 2009: (Start)
a(n) = A099393(n)-A000225(n+1) = A083420(n)-A099393(n).
In binary representation, n>0: n 1's followed by n 0's (A138147(n)).
A000120(a(n)) = n.
A023416(a(n)) = n.
A070939(a(n)) = 2*n.
2*a(n)+1 = A030101(A099393(n)). (End)
a(n) = A085812(n) - A001700(n). - John Molokach, Sep 28 2013
a(n) = 2*A006516(n) = A000079(n)*A000225(n) = A265736(A000225(n)). - Reinhard Zumkeller, Dec 15 2015
a(n) = (4^(n/2) - 4^(n/4))*(4^(n/2) + 4^(n/4)). - Bruno Berselli, Apr 09 2018
Sum_{n>0} 1/a(n) = E - 1, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
a(n) = A000302(n) - A000079(n). - John Reimer Morales, Aug 04 2025

A265705 Triangle read by rows: T(n,k) = k IMPL n, 0 <= k <= n, bitwise logical IMPL.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 3, 3, 3, 3, 7, 6, 5, 4, 7, 7, 7, 5, 5, 7, 7, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 15, 14, 13, 12, 11, 10, 9, 8, 15, 15, 15, 13, 13, 11, 11, 9, 9, 15, 15, 15, 14, 15, 14, 11, 10, 11, 10, 15, 14, 15, 15, 15, 15, 15, 11, 11, 11, 11, 15
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 15 2015

Keywords

Examples

			.          10 | 1010                            12 | 1100
.           4 |  100                             6 |  110
.   ----------+-----                     ----------+-----
.   4 IMPL 10 | 1011 -> T(10,4)=11       6 IMPL 12 | 1101 -> T(12,6)=13
.
First 16 rows of the triangle, where non-symmetrical rows are marked, see comment concerning A158582 and A089633:
.   0:                                 0
.   1:                               1   1
.   2:                             3   2   3
.   3:                           3   3   3   3
.   4:                         7   6   5   4   7    X
.   5:                       7   7   5   5   7   7
.   6:                     7   6   7   6   7   6   7
.   7:                   7   7   7   7   7   7   7   7
.   8:                15  14  13  12  11  10   9   8  15    X
.   9:              15  15  13  13  11  11   9   9  15  15    X
.  10:            15  14  15  14  11  10  11  10  15  14  15    X
.  11:          15  15  15  15  11  11  11  11  15  15  15  15
.  12:        15  14  13  12  15  14  13  12  15  14  13  12  15    X
.  13:      15  15  13  13  15  15  13  13  15  15  13  13  15  15
.  14:    15  14  15  14  15  14  15  14  15  14  15  14  15  14  15
.  15:  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15 .
		

Crossrefs

Cf. A003817, A007088, A029578, A089633, A158582, A247648, A265716 (central terms), A265736 (row sums).
Other triangles: A080099 (AND), A080098 (OR), A051933 (XOR), A102037 (CNIMPL).

Programs

  • Haskell
    a265705_tabl = map a265705_row [0..]
    a265705_row n = map (a265705 n) [0..n]
    a265705 n k = k `bimpl` n where
       bimpl 0 0 = 0
       bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0
                   where (p', u) = divMod p 2; (q', v) = divMod q 2
    
  • Julia
    using IntegerSequences
    for n in 0:15 println(n == 0 ? [0] : [Bits("IMP", k, n) for k in 0:n]) end  # Peter Luschny, Sep 25 2021
  • Maple
    A265705 := (n, k) -> Bits:-Implies(k, n):
    seq(seq(A265705(n, k), k=0..n), n=0..11); # Peter Luschny, Sep 23 2019
  • Mathematica
    T[n_, k_] := If[n == 0, 0, BitOr[2^Length[IntegerDigits[n, 2]]-1-k, n]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 25 2021, after David A. Corneth's PARI code *)
  • PARI
    T(n, k) = if(n==0,return(0)); bitor((2<David A. Corneth, Sep 24 2021
    

Formula

T(n,0) = T(n,n) = A003817(n).
T(2*n,n) = A265716(n).
Let m = A089633(n): T(m,k) = T(m,m-k), k = 0..m.
Let m = A158582(n): T(m,k) != T(m,m-k) for at least one k <= n.
Let m = A247648(n): T(2*m,m) = 2*m.
For n > 0: A029578(n+2) = number of odd terms in row n; no even terms in odd-indexed rows.
A265885(n) = T(prime(n),n).
A053644(n) = smallest k such that row k contains n.

A224915 a(n) = Sum_{k=0..n} n XOR k where XOR is the bitwise logical exclusive-or operator.

Original entry on oeis.org

0, 1, 5, 6, 22, 23, 27, 28, 92, 93, 97, 98, 114, 115, 119, 120, 376, 377, 381, 382, 398, 399, 403, 404, 468, 469, 473, 474, 490, 491, 495, 496, 1520, 1521, 1525, 1526, 1542, 1543, 1547, 1548, 1612, 1613, 1617, 1618, 1634, 1635, 1639, 1640, 1896, 1897, 1901, 1902, 1918
Offset: 0

Views

Author

Alex Ratushnyak, Apr 19 2013

Keywords

Examples

			a(2) = (0 xor 2) + (1 xor 2) = 2 + 3 = 5.
		

Crossrefs

Cf. A001196 (bit doubling).
Row sums of A051933.
Other sums: A222423 (AND), A350093 (OR), A265736 (IMPL), A350094 (CNIMPL), A004125 (mod).

Programs

  • Maple
    read("transforms"):
    A051933 := proc(n,k)
        XORnos(n,k) ;
    end proc:
    A224915 := proc(n)
        add(A051933(n,k),k=0..n) ;
    end proc: # R. J. Mathar, Apr 26 2013
    # second Maple program:
    with(MmaTranslator[Mma]):
    seq(add(BitXor(n,i),i=0..n),n=0..60); # Ridouane Oudra, Dec 09 2020
  • Mathematica
    Array[Sum[BitXor[#, k], {k, 0, #}] &, 53, 0] (* Michael De Vlieger, Dec 09 2020 *)
  • PARI
    a(n) = sum(k=0, n, bitxor(n, k)); \\ Michel Marcus, Jun 08 2019
    
  • PARI
    a(n) = (3*fromdigits(binary(n),4) - n) >>1; \\ Kevin Ryde, Dec 17 2021
  • Python
    for n in range(59):
        s = 0
        for k in range(n):  s += n ^ k
        print(s, end=',')
    
  • Python
    def A224915(n): return 3*int(bin(n)[2:],4)-n>>1 # Chai Wah Wu, Aug 21 2023
    

Formula

a(n) = Sum_{j=1..n} 4^(v_2(j)), where v_2(j) is the exponent of highest power of 2 dividing j. - Ridouane Oudra, Jun 08 2019
a(n) = n + 3*Sum_{j=1..floor(log_2(n))} 4^(j-1)*floor(n/2^j), for n>=1. - Ridouane Oudra, Dec 09 2020
From Kevin Ryde, Dec 17 2021: (Start)
a(2*n+b) = 4*a(n) + n + b where b = 0 or 1.
a(n) = (A001196(n) - n)/2.
a(n) = A350093(n) - A222423(n), being XOR = OR - AND.
(End)

A350093 a(n) = Sum_{k=0..n} n OR k where OR is the bitwise logical OR operator (A003986).

Original entry on oeis.org

0, 2, 7, 12, 26, 34, 45, 56, 100, 114, 131, 148, 174, 194, 217, 240, 392, 418, 447, 476, 514, 546, 581, 616, 684, 722, 763, 804, 854, 898, 945, 992, 1552, 1602, 1655, 1708, 1770, 1826, 1885, 1944, 2036, 2098, 2163, 2228, 2302, 2370, 2441, 2512, 2712, 2786, 2863
Offset: 0

Views

Author

Kevin Ryde, Dec 14 2021

Keywords

Comments

The effect of n OR k is to force a 1-bit at all bit positions where n has a 1-bit, which means n*(n+1) in the sum. Bits of k where n has a 0-bit are NOT(n) AND k = n CNIMPL k so that a(n) = A350094(n) + n*(n+1).

Crossrefs

Cf. A003986 (bitwise OR), A001196 (bit doubling).
Row sums of A080098.
Other sums: A222423 (AND), A224915 (XOR), A265736 (IMPL), A350094 (CNIMPL).

Programs

  • PARI
    a(n) = (3*(n^2 + fromdigits(binary(n),4)) + 2*n) >> 2;

Formula

a(n) = ((3*n+2)*n + A001196(n)) / 4.
a(2*n) = 4*a(n) - n.
a(2*n+1) = 4*a(n) + 2*n + 2.
a(n) = A222423(n) + A224915(n), being OR = AND + XOR.

A350094 a(n) = Sum_{k=0..n} n CNIMPL k where CNIMPL = NOT(n) AND k is the bitwise logical converse non-implication operator (A102037).

Original entry on oeis.org

0, 0, 1, 0, 6, 4, 3, 0, 28, 24, 21, 16, 18, 12, 7, 0, 120, 112, 105, 96, 94, 84, 75, 64, 84, 72, 61, 48, 42, 28, 15, 0, 496, 480, 465, 448, 438, 420, 403, 384, 396, 376, 357, 336, 322, 300, 279, 256, 360, 336, 313, 288, 270, 244, 219, 192, 196, 168, 141, 112
Offset: 0

Views

Author

Kevin Ryde, Dec 14 2021

Keywords

Comments

The effect of NOT(n) AND k is to retain from k only those bits where n has a 0-bit. Conversely n AND k retains from k those bits where n has a 1-bit. Together they are all bits of k so that a(n) + A222423(n) = Sum_{k=0..n} k = n*(n+1)/2.

Crossrefs

Row sums of A102037.
Cf. A001196 (bit doubling).
Other sums: A222423 (AND), A350093 (OR), A224915 (XOR), A265736 (IMPL).

Programs

  • Maple
    with(Bits): cnimp := (n, k) -> And(Not(n), k):
    seq(add(cnimp(n, k), k = 0..n), n = 0..59); # Peter Luschny, Dec 14 2021
  • PARI
    a(n) = (3*fromdigits(binary(n),4) - n^2 - 2*n)/4;

Formula

a(n) = (A001196(n) - n*(n+2))/4.
a(2*n) = 4*a(n) + n.
a(2*n+1) = 4*a(n).
Showing 1-5 of 5 results.