cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A053644 Most significant bit of n, msb(n); largest power of 2 less than or equal to n; write n in binary and change all but the first digit to zero.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
Offset: 0

Views

Author

Henry Bottomley, Mar 22 2000

Keywords

Comments

Except for the initial term, 2^n appears 2^n times. - Lekraj Beedassy, May 26 2005
a(n) is the smallest k such that row k in triangle A265705 contains n. - Reinhard Zumkeller, Dec 17 2015
a(n) is the sum of totient function over powers of 2 <= n. - Anthony Browne, Jun 17 2016
Given positive n, reverse the bits of n and divide by 2^floor(log_2 n). Numerators are in A030101. Ignoring the initial 0, denominators are in this sequence. - Alonso del Arte, Feb 11 2020

Crossrefs

See A000035 for least significant bit(n).
MASKTRANS transform of A055975 (prepended with 0), MASKTRANSi transform of A048678.
Bisection of A065267, A065279, A065291, A072376.
First differences of A063915. Cf. A076877, A073121.
This is Guy Steele's sequence GS(5, 5) (see A135416).
Equals for n >= 1 the first right hand column of A160464. - Johannes W. Meijer, May 24 2009
Diagonal of A088370. - Alois P. Heinz, Oct 28 2011

Programs

  • Haskell
    a053644 n = if n <= 1 then n else 2 * a053644 (div n 2)
    -- Reinhard Zumkeller, Aug 28 2014
    a053644_list = 0 : concat (iterate (\zs -> map (* 2) (zs ++ zs)) [1])
    -- Reinhard Zumkeller, Dec 08 2012, Oct 21 2011, Oct 17 2010
    
  • Magma
    [0] cat [2^Ilog2(n): n in [1..90]]; // Vincenzo Librandi, Dec 11 2018
    
  • Maple
    a:= n-> 2^ilog2(n):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 20 2016
  • Mathematica
    A053644[n_] := 2^(Length[ IntegerDigits[n, 2]] - 1); A053644[0] = 0; Table[A053644[n], {n, 0, 74}] (* Jean-François Alcover, Dec 01 2011 *)
    nv[n_] := Module[{c = 2^n}, Table[c, {c}]]; Join[{0}, Flatten[Array[nv, 7, 0]]] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    a(n)=my(k=1);while(k<=n,k<<=1);k>>1 \\ Charles R Greathouse IV, May 27 2011
    
  • PARI
    a(n) = if(!n, 0, 2^exponent(n)) \\ Iain Fox, Dec 10 2018
    
  • Python
    def a(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1) # Indranil Ghosh, May 25 2017
    
  • Python
    def A053644(n): return 1<Chai Wah Wu, Jul 27 2022
  • Scala
    (0 to 127).map(Integer.highestOneBit()) // _Alonso del Arte, Feb 26 2020
    

Formula

a(n) = a(floor(n / 2)) * 2.
a(n) = 2^A000523(n).
From n >= 1 onward, A053644(n) = A062383(n)/2.
a(0) = 0, a(1) = 1 and a(n+1) = a(n)*floor(n/a(n)). - Benoit Cloitre, Aug 17 2002
G.f.: 1/(1 - x) * (x + Sum_{k >= 1} 2^(k - 1)*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = (A003817(n) + 1)/2 = A091940(n) + 1. - Reinhard Zumkeller, Feb 15 2004
a(n) = Sum_{k = 1..n} (floor(2^k/k) - floor((2^k - 1)/k))*A000010(k). - Anthony Browne, Jun 17 2016
a(2^m+k) = 2^m, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 07 2016

A035327 Write n in binary, interchange 0's and 1's, convert back to decimal.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46
Offset: 0

Views

Author

Keywords

Comments

For n>0: largest m<=n such that no carry occurs when adding m to n in binary arithmetic: A003817(n+1) = a(n) + n = a(n) XOR n. - Reinhard Zumkeller, Nov 14 2009
a(0) could be considered to be 0 (it was set so from 2004 to 2008) if the binary representation of zero was chosen to be the empty string. - Jason Kimberley, Sep 19 2011
For n > 0: A240857(n,a(n)) = 0. - Reinhard Zumkeller, Apr 14 2014
This is a base-2 analog of A048379. Another variant, without converting back to decimal, is given in A256078. - M. F. Hasler, Mar 22 2015
For n >= 2, a(n) is the least nonnegative k that must be added to n+1 to make a power of 2. Hence in a single-elimination tennis tournament with n entrants, a(n-1) is the number of players given a bye in round one, so that the number of players remaining at the start of round two is a power of 2. For example, if 39 players register, a(38)=25 players receive a round-one bye leaving 14 to play, so that round two will have 25+(14/2)=32 players. - Mathew Englander, Jan 20 2024

Examples

			8 = 1000 -> 0111 = 111 = 7.
		

Crossrefs

a(n) = A003817(n) - n, for n>0.
Cf. A240857.

Programs

  • Haskell
    a035327 n = if n <= 1 then 1 - n else 2 * a035327 n' + 1 - b
                where (n',b) = divMod n 2
    -- Reinhard Zumkeller, Feb 21 2014
    
  • Julia
    using IntegerSequences
    A035327List(len) = [Bits("NAND", n, n) for n in 0:len]
    println(A035327List(100))  # Peter Luschny, Sep 25 2021
  • Magma
    A035327:=func; // Jason Kimberley, Sep 19 2011
    
  • Maple
    seq(2^(1 + ilog2(max(n, 1))) - 1 - n, n = 0..81); # Emeric Deutsch, Oct 19 2008
    A035327 := n -> `if`(n=0, 1, Bits:-Nand(n, n)):
    seq(A035327(n), n=0..81); # Peter Luschny, Sep 23 2019
  • Mathematica
    Table[BaseForm[FromDigits[(IntegerDigits[i, 2]/.{0->1, 1->0}), 2], 10], {i, 0, 90}]
    Table[BitXor[n, 2^IntegerPart[Log[2, n] + 1] - 1], {n, 100}] (* Alonso del Arte, Jan 14 2006 *)
    Join[{1},Table[2^BitLength[n]-n-1,{n,100}]] (* Paolo Xausa, Oct 13 2023 *)
    Table[FromDigits[IntegerDigits[n,2]/.{0->1,1->0},2],{n,0,90}] (* Harvey P. Dale, May 03 2025 *)
  • PARI
    a(n)=sum(k=1,n,if(bitxor(n,k)>n,1,0)) \\ Paul D. Hanna, Jan 21 2006
    
  • PARI
    a(n) = bitxor(n, 2^(1+logint(max(n,1), 2))-1) \\ Rémy Sigrist, Jan 04 2019
    
  • PARI
    a(n)=if(n, bitneg(n, exponent(n)+1), 1) \\ Charles R Greathouse IV, Apr 13 2020
    
  • Python
    def a(n): return int(''.join('1' if i == '0' else '0' for i in bin(n)[2:]), 2) # Indranil Ghosh, Apr 29 2017
    
  • Python
    def a(n): return 1 if n == 0 else n^((1 << n.bit_length()) - 1)
    print([a(n) for n in range(100)]) # Michael S. Branicky, Sep 28 2021
    
  • Python
    def A035327(n): return (~n)^(-1<Chai Wah Wu, Dec 20 2022
    
  • SageMath
    def a(n):
        if n == 0:
            return 1
        return sum([(1 - b) << s for (s, b) in enumerate(n.bits())])
    [a(n) for n in srange(82)]  # Peter Luschny, Aug 31 2019
    

Formula

a(n) = 2^k - n - 1, where 2^(k-1) <= n < 2^k.
a(n+1) = (a(n)+n) mod (n+1); a(0) = 1. - Reinhard Zumkeller, Jul 22 2002
G.f.: 1 + 1/(1-x)*Sum_{k>=0} 2^k*x^2^(k+1)/(1+x^2^k). - Ralf Stephan, May 06 2003
a(0) = 0, a(2n+1) = 2*a(n), a(2n) = 2*a(n) + 1. - Philippe Deléham, Feb 29 2004
a(n) = number of positive integers k < n such that n XOR k > n. a(n) = n - A006257(n). - Paul D. Hanna, Jan 21 2006
a(n) = 2^{1+floor(log[2](n))}-n-1 for n>=1; a(0)=1. - Emeric Deutsch, Oct 19 2008
a(n) = if n<2 then 1 - n else 2*a(floor(n/2)) + 1 - n mod 2. - Reinhard Zumkeller, Jan 20 2010
a(n) = abs(2*A053644(n) - n - 1). - Mathew Englander, Jan 22 2024

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Feb 01 2003
a(0) corrected by Paolo P. Lava, Oct 22 2007
Definition completed by M. F. Hasler, Mar 22 2015

A062383 a(0) = 1: for n>0, a(n) = 2^floor(log_2(n)+1) or a(n) = 2*a(floor(n/2)).

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128
Offset: 0

Views

Author

Antti Karttunen, Jun 19 2001

Keywords

Comments

Informally, write down 1 followed by 2^k 2^(k-1) times, for k = 1,2,3,4,... These are the denominators of the binary van der Corput sequence (see A030101 for the numerators). - N. J. A. Sloane, Dec 01 2019
a(n) is the denominator of the form 2^k needed to make the ratio (2n-1)/2^k lie in the interval [1-2], i.e. such ratios are 1/1, 3/2, 5/4, 7/4, 9/8, 11/8, 13/8, 15/8, 17/16, 19/16, 21/16, ... where the numerators are A005408 (The odd numbers).
Let A_n be the upper triangular matrix in the group GL(n,2) that has zero entries below the diagonal and 1 elsewhere. For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /. The order of this matrix as an element of GL(n,2) is a(n-1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 14 2001
A006257(n)/a(n) = (0, 0.1, 0.01, 0.11, 0.001, ...) enumerates all binary fractions in the unit interval [0, 1). - Fredrik Johansson, Aug 14 2006
a(n) = maximum of row n+1 in A240769. - Reinhard Zumkeller, Apr 13 2014
This is the discriminator sequence for the odious numbers. - N. J. A. Sloane, May 10 2016
From Jianing Song, Jul 05 2025: (Start)
a(n) is the period of {binomial(N,n) mod 2: N in Z}. For the general result, see A349593.
Since the modulus (2) is a prime, the remainder of binomial(N,n) is given by Lucas's theorem. (End)

Crossrefs

Apart from the initial term, equals 2 * A053644. MASKTRANSi(A062383) seems to give a signed form of A038712. (See identities at A053644). floor_log_2 given in A054429.
Equals A003817(n)+1. Cf. A002884.
Bisection of A065285. Cf. A076877.
Equals for n>=1 the r(n) sequence of A160464. - Johannes W. Meijer, May 24 2009
Equals the r(n) sequence of A162440 for n>=1. - Johannes W. Meijer, Jul 06 2009
Discriminator of the odious numbers (A000069). - Jeffrey Shallit, May 08 2016
Column 2 of A349593. A064235 (if offset 0), A385552, A385553, and A385554 are respectively columns 3, 5, 6, and 10.

Programs

  • Haskell
    import Data.List (transpose)
    a062383 n = a062383_list !! n
    a062383_list = 1 : zs where
       zs = 2 : (map (* 2) $ concat $ transpose [zs, zs])
    -- Reinhard Zumkeller, Aug 27 2014, Mar 13 2014
    
  • Magma
    [2^Floor(Log(2,2*n+1)): n in [0..70]]; // Bruno Berselli, Mar 04 2016
    
  • Maple
    [seq(2^(floor_log_2(j)+1),j=0..127)]; or [seq(coerce1st_octave((2*j)+1),j=0..127)]; or [seq(a(j),j=0..127)];
    coerce1st_octave := proc(r) option remember; if(r < 1) then coerce1st_octave(2*r); else if(r >= 2) then coerce1st_octave(r/2); else (r); fi; fi; end;
    A062383 := proc(n)
        option remember;
        if n = 0 then
            1 ;
        else
            2*procname(floor(n/2));
        end if;
    end proc:
    A062383 := n -> 1 + Bits:-Iff(n, n):
    seq(A062383(n), n=0..69); # Peter Luschny, Sep 23 2019
  • Mathematica
    a[n_] := a[n] = 2 a[n/2 // Floor]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 04 2016 *)
    Table[2^Floor[Log2[n] + 1], {n, 0, 20}] (* Eric W. Weisstein, Nov 17 2017 *)
    2^Floor[Log2[Range[0, 20]] + 1] (* Eric W. Weisstein, Nov 17 2017 *)
    2^BitLength[Range[0, 100]] (* Paolo Xausa, Jan 29 2025 *)
  • PARI
    { a=1; for (n=0, 1000, write("b062383.txt", n, " ", a*=ceil((n + 1)/a)) ) } \\ Harry J. Smith, Aug 06 2009
    
  • PARI
    a(n)=1<<(log(2*n+1)\log(2)) \\ Charles R Greathouse IV, Dec 08 2011
    
  • Python
    def A062383(n): return 1 << n.bit_length() # Chai Wah Wu, Jun 30 2022

Formula

a(1) = 1 and a(n+1) = a(n)*ceiling(n/a(n)). - Benoit Cloitre, Aug 17 2002
G.f.: 1/(1-x) * (1 + Sum_{k>=0} 2^k*x^2^k). - Ralf Stephan, Apr 18 2003
a(n) = A142151(2*n)/2 + 1. - Reinhard Zumkeller, Jul 15 2008
log(a(n))/log(2) = A029837(n+1). - Johannes W. Meijer, Jul 06 2009
a(n+1) = a(n) + A099894(n). - Reinhard Zumkeller, Aug 06 2009
a(n) = A264619(n) - A264618(n). - Reinhard Zumkeller, Dec 01 2015
a(n) is the smallest power of 2 > n. - Chai Wah Wu, Nov 04 2016
a(n) = 2^ceiling(log_2(n+1)). - M. F. Hasler, Sep 20 2017

A142150 The nonnegative integers interleaved with 0's.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0, 32, 0, 33, 0, 34, 0, 35, 0, 36, 0, 37, 0, 38, 0, 39, 0, 40, 0, 41, 0, 42, 0, 43, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 15 2008

Keywords

Comments

Number of vertical pairs in a wheel with n equal sections. - Wesley Ivan Hurt, Jan 22 2012
Number of even terms of n-th row in the triangles A162610 and A209297. - Reinhard Zumkeller, Jan 19 2013
Also the result of writing n-1 in base 2 and multiplying the last digit with the number with its last digit removed. See A115273 and A257844-A257850 for generalization to other bases. - M. F. Hasler, May 10 2015
Also follows the rule: a(n+1) is the number of terms that are identical with a(n) for a(0..n-1). - Marc Morgenegg, Jul 08 2019

Crossrefs

Programs

Formula

a(n) = XOR{k AND (n-k): 0<=k<=n}.
a(n) = (n/2)*0^(n mod 2); a(2*n)=n and a(2*n+1)=0.
a(n) = floor(n^2/2) mod n. - Enrique Pérez Herrero, Jul 29 2009
a(n) = A027656(n-2). - Reinhard Zumkeller, Nov 05 2009
a(n) = Sum_{k=0..n} (k mod 2)*((n-k) mod 2). - Reinhard Zumkeller, Nov 05 2009
a(n+1) = A000217(n) mod A000027(n+1) = A000217(n) mod A001477(n+1). - Edgar Almeida Ribeiro (edgar.a.ribeiro(AT)gmail.com), May 19 2010
From Bruno Berselli, Oct 19 2010: (Start)
a(n) = n*(1+(-1)^n)/4.
G.f.: x^2/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) for n > 3.
Sum_{i=0..n} a(i) = (2*n*(n+1)+(2*n+1)*(-1)^n-1)/16 (see A008805). (End)
a(n) = -a(-n) = A195034(n-1)-A195034(-n-1). - Bruno Berselli, Oct 12 2011
a(n) = A000326(n) - A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = Sum_{i=1..n} floor((2*i-n)/2). - Wesley Ivan Hurt, Aug 21 2014
a(n-1) = floor(n/2)*(n mod 2), where (n mod 2) is the parity of n, or remainder of division by 2. - M. F. Hasler, May 10 2015
a(n) = A158416(n) - 1. - Filip Zaludek, Oct 30 2016
E.g.f.: x*sinh(x)/2. - Ilya Gutkovskiy, Oct 30 2016
a(n) = A000007(a(n-1)) + a(n-2) for n > 1. - Nicolas Bělohoubek, Oct 06 2024

A135416 a(n) = A036987(n)*(n+1)/2.

Original entry on oeis.org

1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008

Keywords

Comments

Guy Steele defines a family of 36 integer sequences, denoted here by GS(i,j) for 1 <= i, j <= 6, as follows. a[1]=1; a[2n] = i-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}; a[2n+1] = j-th term of {0,1,a[n],a[n]+1,2a[n],2a[n]+1}. The present sequence is GS(1,5).
The full list of 36 sequences:
GS(1,1) = A000007
GS(1,2) = A000035
GS(1,3) = A036987
GS(1,4) = A007814
GS(1,5) = A135416 (the present sequence)
GS(1,6) = A135481
GS(2,1) = A135528
GS(2,2) = A000012
GS(2,3) = A000012
GS(2,4) = A091090
GS(2,5) = A135517
GS(2,6) = A135521
GS(3,1) = A036987
GS(3,2) = A000012
GS(3,3) = A000012
GS(3,4) = A000120
GS(3,5) = A048896
GS(3,6) = A038573
GS(4,1) = A135523
GS(4,2) = A001511
GS(4,3) = A008687
GS(4,4) = A070939
GS(4,5) = A135529
GS(4,6) = A135533
GS(5,1) = A048298
GS(5,2) = A006519
GS(5,3) = A080100
GS(5,4) = A087808
GS(5,5) = A053644
GS(5,6) = A000027
GS(6,1) = A135534
GS(6,2) = A038712
GS(6,3) = A135540
GS(6,4) = A135542
GS(6,5) = A054429
GS(6,6) = A003817
(with a(0)=1): Moebius transform of A038712.

Crossrefs

Equals A048298(n+1)/2. Cf. A036987, A182660.

Programs

  • Maple
    GS:=proc(i,j,M) local a,n; a:=array(1..2*M+1); a[1]:=1;
    for n from 1 to M do
    a[2*n] :=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][i];
    a[2*n+1]:=[0,1,a[n],a[n]+1,2*a[n],2*a[n]+1][j];
    od: a:=convert(a,list); RETURN(a); end;
    GS(1,5,200):
  • Mathematica
    i = 1; j = 5; Clear[a]; a[1] = 1; a[n_?EvenQ] := a[n] = {0, 1, a[n/2], a[n/2]+1, 2*a[n/2], 2*a[n/2]+1}[[i]]; a[n_?OddQ] := a[n] = {0, 1, a[(n-1)/2], a[(n-1)/2]+1, 2*a[(n-1)/2], 2*a[(n-1)/2]+1}[[j]]; Array[a, 105] (* Jean-François Alcover, Sep 12 2013 *)
  • PARI
    A048298(n) = if(!n,0,if(!bitand(n,n-1),n,0));
    A135416(n) = (A048298(n+1)/2); \\ Antti Karttunen, Jul 22 2018
    
  • Python
    def A135416(n): return int(not(n&(n+1)))*(n+1)>>1 # Chai Wah Wu, Jul 06 2022

Formula

G.f.: sum{k>=1, 2^(k-1)*x^(2^k-1) }.
Recurrence: a(2n+1) = 2a(n), a(2n) = 0, starting a(1) = 1.

Extensions

Formulae and comments by Ralf Stephan, Jun 20 2014

A087116 Number of maximal groups of consecutive zeros in binary representation of n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 14 2003

Keywords

Comments

The following four statements are equivalent: a(n) = 0; n = 2^k - 1 for some k; A087117(n) = 0; A023416(n) = 0.

Examples

			G.f. = 1 + x^2 + x^4 + x^5 + x^6 + x^8 + x^9 + 2*x^10 + x^11 + x^12 + x^13 + x^14 + ...
		

Crossrefs

Essentially the same as A033264.

Programs

  • Haskell
    a087116 0 = 1
    a087116 n = f 0 n where
       f y 0 = y
       f y x = if r == 0 then g x' else f y x'
               where (x', r) = divMod x 2
                     g z = if r == 0 then g z' else f (y + 1) z'
                           where (z', r) = divMod z 2
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Mathematica
    a[n_] := SequenceCount[IntegerDigits[n, 2], {Longest[0..]}];
    Table[a[n], {n, 0, 101}] (* Jean-François Alcover, Oct 18 2021 *)
  • PARI
    a(n) = if (n == 0, 1, hammingweight(bitxor(n, n>>1)) >> 1);
    vector(102, i, a(i-1))  \\ Gheorghe Coserea, Sep 17 2015
    
  • Python
    def A087116(n):
        return sum(1 for d in bin(n)[2:].split('1') if len(d)) # Chai Wah Wu, Nov 04 2016

Formula

a(n) = A033264(n) for n > 0 since strings of 0's alternate with strings of 1's. - Jonathan Sondow, Jan 17 2016
a(n) = a(2*n + 1) = a(4*n + 2) - 1, if n > 0. - Michael Somos, Nov 04 2016
a(n) = A069010(A003817(n)-n) for n > 0. - Chai Wah Wu, Nov 04 2016

A265705 Triangle read by rows: T(n,k) = k IMPL n, 0 <= k <= n, bitwise logical IMPL.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 3, 3, 3, 3, 7, 6, 5, 4, 7, 7, 7, 5, 5, 7, 7, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 15, 14, 13, 12, 11, 10, 9, 8, 15, 15, 15, 13, 13, 11, 11, 9, 9, 15, 15, 15, 14, 15, 14, 11, 10, 11, 10, 15, 14, 15, 15, 15, 15, 15, 11, 11, 11, 11, 15
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 15 2015

Keywords

Examples

			.          10 | 1010                            12 | 1100
.           4 |  100                             6 |  110
.   ----------+-----                     ----------+-----
.   4 IMPL 10 | 1011 -> T(10,4)=11       6 IMPL 12 | 1101 -> T(12,6)=13
.
First 16 rows of the triangle, where non-symmetrical rows are marked, see comment concerning A158582 and A089633:
.   0:                                 0
.   1:                               1   1
.   2:                             3   2   3
.   3:                           3   3   3   3
.   4:                         7   6   5   4   7    X
.   5:                       7   7   5   5   7   7
.   6:                     7   6   7   6   7   6   7
.   7:                   7   7   7   7   7   7   7   7
.   8:                15  14  13  12  11  10   9   8  15    X
.   9:              15  15  13  13  11  11   9   9  15  15    X
.  10:            15  14  15  14  11  10  11  10  15  14  15    X
.  11:          15  15  15  15  11  11  11  11  15  15  15  15
.  12:        15  14  13  12  15  14  13  12  15  14  13  12  15    X
.  13:      15  15  13  13  15  15  13  13  15  15  13  13  15  15
.  14:    15  14  15  14  15  14  15  14  15  14  15  14  15  14  15
.  15:  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15  15 .
		

Crossrefs

Cf. A003817, A007088, A029578, A089633, A158582, A247648, A265716 (central terms), A265736 (row sums).
Other triangles: A080099 (AND), A080098 (OR), A051933 (XOR), A102037 (CNIMPL).

Programs

  • Haskell
    a265705_tabl = map a265705_row [0..]
    a265705_row n = map (a265705 n) [0..n]
    a265705 n k = k `bimpl` n where
       bimpl 0 0 = 0
       bimpl p q = 2 * bimpl p' q' + if u <= v then 1 else 0
                   where (p', u) = divMod p 2; (q', v) = divMod q 2
    
  • Julia
    using IntegerSequences
    for n in 0:15 println(n == 0 ? [0] : [Bits("IMP", k, n) for k in 0:n]) end  # Peter Luschny, Sep 25 2021
  • Maple
    A265705 := (n, k) -> Bits:-Implies(k, n):
    seq(seq(A265705(n, k), k=0..n), n=0..11); # Peter Luschny, Sep 23 2019
  • Mathematica
    T[n_, k_] := If[n == 0, 0, BitOr[2^Length[IntegerDigits[n, 2]]-1-k, n]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 25 2021, after David A. Corneth's PARI code *)
  • PARI
    T(n, k) = if(n==0,return(0)); bitor((2<David A. Corneth, Sep 24 2021
    

Formula

T(n,0) = T(n,n) = A003817(n).
T(2*n,n) = A265716(n).
Let m = A089633(n): T(m,k) = T(m,m-k), k = 0..m.
Let m = A158582(n): T(m,k) != T(m,m-k) for at least one k <= n.
Let m = A247648(n): T(2*m,m) = 2*m.
For n > 0: A029578(n+2) = number of odd terms in row n; no even terms in odd-indexed rows.
A265885(n) = T(prime(n),n).
A053644(n) = smallest k such that row k contains n.

A007448 Knuth's sequence (or Knuth numbers): a(n+1) = 1 + min( 2*a(floor(n/2)), 3*a(floor(n/3)) ).

Original entry on oeis.org

1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, 13, 13, 15, 15, 19, 19, 19, 19, 21, 21, 22, 27, 27, 27, 27, 27, 28, 31, 31, 31, 39, 39, 39, 39, 39, 39, 39, 39, 40, 43, 43, 43, 45, 45, 46, 55, 55, 55, 55, 55, 55, 55, 55, 55, 57, 57, 58, 63, 63, 63, 63, 63, 64, 67, 67, 67, 79, 79, 79, 79
Offset: 0

Views

Author

Keywords

Comments

Record values and where they occur: a(A002977(n-1)) = A002977(n) and a(m) < A002977(n) for m < A002977(n-1). - Reinhard Zumkeller, Jul 13 2010
A003817 and A179526 are subsequences. - Reinhard Zumkeller, Jul 18 2010

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 78.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002977.

Programs

  • Haskell
    a007448 n = a007448_list !! n
    a007448_list = f [0] [0] where
       f (x:xs) (y:ys) = z : f (xs ++ [2*z,2*z]) (ys ++ [3*z,3*z,3*z])
         where z = 1 + min x y
    -- Reinhard Zumkeller, Sep 20 2011
    
  • Maple
    a := proc(n) option remember; ifelse(n = 0, 1, 1 + min(2 * a(iquo(n-1, 2)), 3 * a(iquo(n-1,  3)))) end: seq(a(n), n = 0..70);  # Peter Luschny, Jul 16 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n] = 1 + Min[2*a[Floor[(n - 1)/2]], 3*a[Floor[(n - 1)/3]]]; Table[ a[n], {n, 0, 72}] (* Robert G. Wilson v, Jan 29 2005, corrected by Michael De Vlieger, Jul 16 2025 *)
  • Python
    def aupton(nn):
        alst = [1]
        [alst.append(1 + min(2*alst[n//2], 3*alst[n//3])) for n in range(nn)]
        return alst
    print(aupton(70)) # Michael S. Branicky, Mar 28 2022

A142151 a(n) = OR{k XOR (n-k): 0<=k<=n}.

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 6, 7, 14, 13, 14, 11, 14, 13, 14, 15, 30, 29, 30, 27, 30, 29, 30, 23, 30, 29, 30, 27, 30, 29, 30, 31, 62, 61, 62, 59, 62, 61, 62, 55, 62, 61, 62, 59, 62, 61, 62, 47, 62, 61, 62, 59, 62, 61, 62, 55, 62, 61, 62, 59, 62, 61, 62, 63, 126, 125, 126, 123, 126, 125
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 15 2008

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Bits (xor, (.|.))
    a142151 :: Integer -> Integer
    a142151 = foldl (.|.) 0 . zipWith xor [0..] . reverse . enumFromTo 1
    -- Reinhard Zumkeller, Mar 31 2015
    
  • Julia
    using IntegerSequences
    A142151List(len) = [Bits("CIMP", n, n+1) for n in 0:len]
    println(A142151List(69))  # Peter Luschny, Sep 25 2021
    
  • Maple
    A142151 := n -> n + Bits:-Nor(n, n+1):
    seq(A142151(n), n=0..69); # Peter Luschny, Sep 26 2019
  • Python
    from functools import reduce
    from operator import or_
    def A142151(n): return 0 if n == 0 else reduce(or_,(k^n-k for k in range(n+1))) if n % 2 else (1 << n.bit_length()-1)-1 <<1 # Chai Wah Wu, Jun 30 2022

Formula

a(2*n) = 2*(A062383(n)-1);
A023416(a(n)) <= 1.

A086099 a(n) = OR(k AND (n-k): 0<=k<=n), AND and OR bitwise.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 3, 0, 7, 6, 7, 4, 7, 6, 7, 0, 15, 14, 15, 12, 15, 14, 15, 8, 15, 14, 15, 12, 15, 14, 15, 0, 31, 30, 31, 28, 31, 30, 31, 24, 31, 30, 31, 28, 31, 30, 31, 16, 31, 30, 31, 28, 31, 30, 31, 24, 31, 30, 31, 28, 31, 30, 31, 0, 63, 62, 63, 60, 63, 62, 63, 56, 63, 62
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2003

Keywords

Comments

a(2^n - 1) = 0, a(3*2^n - 1) = 2^n;
A086100(n) = A007088(a(n)).

Examples

			a(4) = (0 AND 4) OR (1 AND 3) OR (2 AND 2) OR (3 AND 1) OR (4 AND 0) -> (000 AND 100) OR (001 AND 011) OR (010 AND 010) OR (011 AND 001) OR (111 AND 000) = 000 OR 011 OR 010 OR 011 OR 000 = 011 -> a(4)=3.
		

Crossrefs

Cf. A003817 (even bisection), A062383.
Cf. A086100 (in binary), A007088.

Programs

  • Haskell
    import Data.Bits ((.&.), (.|.))
    a086099 n = foldl1 (.|.) $ zipWith (.&.) [0..] $ reverse [0..n] :: Integer
    -- Reinhard Zumkeller, Jun 04 2012
    
  • Mathematica
    a[n_] := BitOr @@ Table[BitAnd[k, n - k], {k, 0, n}]; Table[a[n], {n, 0, 73}] (* Jean-François Alcover, Jun 19 2012 *)
  • PARI
    a(n) = n++; 1<Kevin Ryde, Apr 11 2023

Formula

a(2*n) = 2*2^floor(log_2(n)) - 1 = A003817(n).
a(2*n+1) = 2*a(n).
a(n) = A053644(n+1) - A006519(n+1). - Ridouane Oudra, Apr 09 2023
Showing 1-10 of 28 results. Next