A265734 Permutation of nonnegative integers: a(n) = n + floor(n/5)*(-1)^(n mod 5).
0, 1, 2, 3, 4, 6, 5, 8, 7, 10, 12, 9, 14, 11, 16, 18, 13, 20, 15, 22, 24, 17, 26, 19, 28, 30, 21, 32, 23, 34, 36, 25, 38, 27, 40, 42, 29, 44, 31, 46, 48, 33, 50, 35, 52, 54, 37, 56, 39, 58, 60, 41, 62, 43, 64, 66, 45, 68, 47, 70, 72, 49, 74, 51, 76, 78, 53, 80
Offset: 0
Examples
------------------------------------------------------------------------ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ... + + + + + + + + + + + + + + + + + + + 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, 2, -2, 2, -2, 2, 3, -3, 3, -3, ... ------------------------------------------------------------------------ 0, 1, 2, 3, 4, 6, 5, 8, 7, 10, 12, 9, 14, 11, 16, 18, 13, 20, 15, ... ------------------------------------------------------------------------
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,2,0,0,0,0,-1).
- Index entries for permutations of the positive (or nonnegative) integers.
Crossrefs
Programs
-
Magma
[n+Floor(n/5)*(-1)^(n mod 5): n in [0..80]];
-
Mathematica
Table[n + Floor[n/5] (-1)^Mod[n, 5], {n, 0, 80}]
-
Sage
[n+floor(n/5)*(-1)^mod(n, 5) for n in (0..80)]
Formula
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 6*x^4 + 3*x^5 + 4*x^6 + x^7 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = 2*a(n-5) - a(n-10).
a(5*k+r) = (5+(-1)^r)*k + r, where r=0..4.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*(1/(2*sqrt(2))-1/(3*sqrt(3))) + log(2)/6. - Amiram Eldar, Mar 30 2023