cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265735 Integers in the interval [Pi*k - 1/k, Pi*k + 1/k] for some k > 0.

Original entry on oeis.org

3, 4, 6, 19, 22, 44, 66, 88, 333, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 103993, 104348, 208341, 312689, 521030, 833719, 1146408, 2292816, 4272943, 5419351, 10838702, 16258053, 80143857, 85563208
Offset: 1

Views

Author

Michel Lagneau, Dec 15 2015

Keywords

Comments

Conjecture: the sequence is infinite.
See the reference for a similar problem with Fibonacci numbers.
For k > 1, the interval [Pi*k - 1/k, Pi*k + 1/k] contains exactly one integer.
The corresponding integers k are 1, 2, 6, 7, 14, 21, 28,...(see A265739).
We observe two properties:
(1) a(n) = m*a(n-m+1) for some n, m=2,3,4.
Examples:
m = 2 => a(7)=2*a(6), a(11)=2*a(10), a(15)=2*a(14), a(20)=2*a(19), a(25)=2*a(24), a(30)=2*a(29),...
m = 3 => a(16)=3*a(14), a(21)=3*a(19), a(26)=3*a(24), a(31)=3*a(29),...
m = 4 => a(4)=4*a(1), a(32)=4*a(29), ...
But, for m=5, the formula (1) is not valid. We find a(13)=5*a(9), a(18)=5*a(10), a(23)=5*a(11), ...
(2) a(n+2) = a(n) + a(n+1) for n = 4, 9, 26, 27, 28, 29, 35, ...
For k > 1, the integer satisfying the definition is such that ceiling(Pi*k - 1/k) = floor(Pi*k + 1/k). - Stefano Spezia, Apr 26 2023

Examples

			For k=1 there exists two integers a(1)=3 and a(2)=4 in the interval [1*Pi -1/1, 1*Pi + 1/1] = [2.14159...,4.14159...];
for k=2, the number a(3)=6 is in the interval [2*Pi-1/2, 2*Pi+1/2] = [5.783185..., 6.783185...];
for k=6, the number a(4)= 19 is in the interval [6*Pi-1/6, 6*Pi+1/6] = [18.682889..., 19.016223...].
		

Crossrefs

Cf. A000796, A265739. Contains A002485 (without the first two terms) as a subsequence.

Programs

  • Maple
    *** the program gives the interval [a,b],a(n) and k ***
    nn:=10^9:
    for n from 1 to nn do:
    x1:=evalhf(Pi*n-1/n):y1:=evalhf(Pi*n+1/n):
    x:=floor(x1):y:=floor(y1):
    for j from x+1 to y do:
    printf("%g %g %d %d\n",x1,y1,j,n):
    od:
    od:
  • Mathematica
    kmax=10^9; Flatten[Table[Range[Ceiling[Pi k-1/k], Floor[Pi k+1/k]], {k, kmax}]] (* or limiting memory usage *)
    a = {3,4}; kmax = 10^9; For[k = 1, k <= kmax, k++,
     If[(nw = Ceiling[Pi k - 1/k]) == Floor[Pi k + 1/k],
      AppendTo[a, nw]]]; a (* Stefano Spezia, Apr 26 2023 *)