A265735 Integers in the interval [Pi*k - 1/k, Pi*k + 1/k] for some k > 0.
3, 4, 6, 19, 22, 44, 66, 88, 333, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 3550, 3905, 4260, 4615, 4970, 5325, 5680, 6035, 103993, 104348, 208341, 312689, 521030, 833719, 1146408, 2292816, 4272943, 5419351, 10838702, 16258053, 80143857, 85563208
Offset: 1
Keywords
Examples
For k=1 there exists two integers a(1)=3 and a(2)=4 in the interval [1*Pi -1/1, 1*Pi + 1/1] = [2.14159...,4.14159...]; for k=2, the number a(3)=6 is in the interval [2*Pi-1/2, 2*Pi+1/2] = [5.783185..., 6.783185...]; for k=6, the number a(4)= 19 is in the interval [6*Pi-1/6, 6*Pi+1/6] = [18.682889..., 19.016223...].
Links
- Stefano Spezia, Table of n, a(n) for n = 1..52
- Takao Komatsu, The interval associated with a Fibonacci number, The Fibonacci Quarterly, Volume 41, Number 1, February 2003.
- Eric Weisstein's World of Mathematics, Pi Continued Fraction
Programs
-
Maple
*** the program gives the interval [a,b],a(n) and k *** nn:=10^9: for n from 1 to nn do: x1:=evalhf(Pi*n-1/n):y1:=evalhf(Pi*n+1/n): x:=floor(x1):y:=floor(y1): for j from x+1 to y do: printf("%g %g %d %d\n",x1,y1,j,n): od: od:
-
Mathematica
kmax=10^9; Flatten[Table[Range[Ceiling[Pi k-1/k], Floor[Pi k+1/k]], {k, kmax}]] (* or limiting memory usage *) a = {3,4}; kmax = 10^9; For[k = 1, k <= kmax, k++, If[(nw = Ceiling[Pi k - 1/k]) == Floor[Pi k + 1/k], AppendTo[a, nw]]]; a (* Stefano Spezia, Apr 26 2023 *)
Comments