cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A337249 Numbers k for which csc(k) > k.

Original entry on oeis.org

1, 3, 44, 710, 1420, 2130, 2840, 312689, 10838702, 6167950454, 21053343141, 63160029423, 105266715705
Offset: 1

Views

Author

Joseph C. Y. Wong, Aug 21 2020

Keywords

Comments

a(14) > 1.129*10^12, if it exists. - Kevin P. Thompson, Nov 07 2021
a(14) exists. The numbers 428224593349304, 6134899525417045, 66627445592888887, 430010946591069243, and 2646693125139304345 all satisfy csc(k) > k and are larger than a(13). It is not yet proven whether these are a(14) - a(18) or if there are any other numbers in the sequence before or between them. - Wolfe Padawer, Apr 11 2023

Examples

			csc(1) = 1.1884... so 1 is a term.
		

Crossrefs

Subsequence of A080142, A046955.
Subsequence of A265735 and A325158 if you omit the first term of A337249.

Programs

  • Mathematica
    Select[Range[10^6], Csc[#] > # &] (* Amiram Eldar, Aug 21 2020 *)
  • PARI
    isok(m) = 1/sin(m) > m; \\ Michel Marcus, Aug 27 2020
  • Python
    import math
    i = 1
    while True:
      if 1 / math.sin(i) > i:
        print(i)
      i += 1
    

Extensions

a(11)-a(13) from Kevin P. Thompson, Nov 07 2021

A307518 Positive integers m where |m*sin(m)| increases to a new record.

Original entry on oeis.org

1, 2, 4, 5, 8, 11, 14, 17, 20, 23, 24, 27, 30, 33, 36, 39, 42, 46, 49, 52, 55, 58, 61, 68, 71, 74, 77, 80, 83, 90, 93, 96, 99, 102, 105, 115, 118, 121, 124, 127, 137, 140, 143, 146, 159, 162, 165, 168, 181, 184, 187, 190, 206, 209, 212, 228, 231, 234, 250, 253
Offset: 1

Views

Author

Alois P. Heinz, Apr 12 2019

Keywords

Examples

			|a(n)*sin(a(n))|_{n=1..5} = 0.8415..., 1.819..., 3.027..., 4.794..., 7.915... .
		

Crossrefs

First differences give A307558.

A265739 Numbers k such that there exists at least one integer in the interval [Pi*k - 1/k, Pi*k + 1/k].

Original entry on oeis.org

1, 2, 6, 7, 14, 21, 28, 106, 113, 226, 339, 452, 565, 678, 791, 904, 1017, 1130, 1243, 1356, 1469, 1582, 1695, 1808, 1921, 33102, 33215, 66317, 99532, 165849, 265381, 364913, 729826, 1360120, 1725033, 3450066, 5175099, 25510582, 27235615
Offset: 1

Views

Author

Michel Lagneau, Dec 15 2015

Keywords

Comments

Conjecture: the sequence is infinite.
See the reference for a similar problem with Fibonacci numbers.
For k > 1, the interval [Pi*k - 1/k, Pi*k + 1/k] contains exactly one integer.
The corresponding integers in the interval [Pi*k - 1/k, Pi*k + 1/k] are 3, 4, 6, 19, 22, 44, 66, 88, ... (see A265735).
The sequence is infinite by Dirichlet's approximation theorem. In other words, the irrationality measure of Pi is at least 2 so this sequence is infinite. - Charles R Greathouse IV, Nov 07 2022

Examples

			For k=1, there exist two integers, 3 and 4, in the interval [1*Pi - 1/1, 1*Pi + 1/1] = [2.14159..., 4.14159...];
for k=2, the number 6 is in the interval [2*Pi - 1/2, 2*Pi + 1/2] = [5.783185..., 6.783185...].
for k=6, the number 19 is in the interval [6*Pi - 1/6, 6*Pi + 1/6] = [18.682889..., 19.016223...].
		

Crossrefs

Cf. A000796, A265735. Contains A002486 (without the first two terms) as a subsequence.

Programs

  • Maple
    # program gives the interval [a,b], the first integer in [a,b] and n
    nn:=10^9:
    for n from 1 to nn do:
    x1:=evalhf(Pi*n-1/n):y1:=evalhf(Pi*n+1/n):
    x:=floor(x1):y:=floor(y1):
    for j from x+1 to y do:
    printf("%g %g %d %d\n",x1,y1,j,n):
    od:
    od:

A362602 Integers in the interval [Pi*k - 1/k, Pi*k + 1/k] for some k > 0 that are numerators of convergents to 2*Pi.

Original entry on oeis.org

6, 19, 44, 333, 710, 103993, 312689, 2292816, 4272943, 10838702, 80143857, 411557987, 2549491779, 14885392687, 42106686282, 1783366216531, 8958937768937, 288469374822515, 856449186698608, 5706674932067741, 12269799050834090, 30246273033735921, 133254891185777774
Offset: 1

Views

Author

Keywords

Comments

Conjecture: the sequence is infinite.

Crossrefs

Intersection of A046955 and A265735.

Programs

  • Mathematica
    hmax=30; A046955=Join[{1}, Numerator[Convergents[2Pi, hmax]]]; a={}; For[h=2, h<=hmax, h++, k=Intersection[List[Floor[Last[x/.N[Solve[Pi*x^2 - 1 - Part[A046955,h] x == 0, x], 2*hmax]]]], List[Ceiling[Last[x/.N[Solve[Pi*x^2 + 1 - Part[A046955,h] x == 0, x], 2*hmax]]]]]; If[k!={} && Ceiling[k*Pi - 1/k] == Floor[k*Pi + 1/k], AppendTo[a,Part[A046955,h]]]]; a
Showing 1-4 of 4 results.