cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A265745 a(n) is the number of Jacobsthal numbers (A001045) needed to sum to n using the greedy algorithm.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 4, 3, 4, 5, 4, 5, 4, 5, 6, 5, 6, 1, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 2
Offset: 0

Views

Author

Antti Karttunen, Dec 17 2015

Keywords

Comments

Sum of digits in "Jacobsthal greedy base", A265747.
It would be nice to know for sure whether this sequence gives also the least number of Jacobsthal numbers that add to n, i.e., that there cannot be even better nongreedy solutions.
The integer 63=21+21+21 has 3 for its 'non-greedy' solution, and a(63) = 5 for its greedy solution 63=43+11+5+3+1. - Yuriko Suwa, Jul 11 2021
Positions where a(n) is different from A372555(n) are n=63, 84, 148, 169, 191, 212, 234, 255, etc. See A372557. - Antti Karttunen, May 07 2024

Examples

			a(0) = 0, because no numbers are needed to form an empty sum, which is zero.
For n=1 we need just A001045(2) = 1, thus a(1) = 1.
For n=2 we need A001045(2) + A001045(2) = 1 + 1, thus a(2) = 2.
For n=4 we need A001045(3) + A001045(2) = 3 + 1, thus a(4) = 2.
For n=6 we form the greedy sum as A001045(4) + A001045(2) = 5 + 1, thus a(6) = 2. Alternatively, we could form the sum as A001045(3) + A001045(3) = 3 + 3, but the number of summands in that case is no less.
For n=7 we need A001045(4) + A001045(2) + A001045(2) = 5 + 1 + 1, thus a(7) = 3.
For n=8 we need A001045(4) + A001045(3) = 5 + 3, thus a(8) = 2.
For n=10 we need A001045(4) + A001045(4) = 5 + 5, thus a(10) = 2.
		

Crossrefs

Cf. A054111 (apparently the positions of the first occurrence of each n > 0).

Programs

  • Mathematica
    jacob[n_] := (2^n - (-1)^n)/3; maxInd[n_] := Floor[Log2[3*n + 1]]; A265745[n_] := A265745[n] = 1 + A265745[n - jacob[maxInd[n]]]; A265745[0] = 0; Array[A265745, 100, 0] (* Amiram Eldar, Jul 21 2023 *)
  • PARI
    A130249(n) = floor(log(3*n + 1)/log(2));
    A001045(n) = (2^n - (-1)^n) / 3;
    A265745(n) = {if(n == 0, 0, my(d = n - A001045(A130249(n))); if(d == 0, 1, 1 + A265745(d)));} \\ Amiram Eldar, Jul 21 2023
  • Python
    def greedyJ(n): n1 = (3*n+1).bit_length() - 1; return (2**n1 - (-1)**n1)//3
    def a(n): return 0 if n == 0 else 1 + a(n - greedyJ(n))
    print([a(n) for n in range(107)]) # Michael S. Branicky, Jul 11 2021
    

Formula

a(0) = 0; for n >= 1, a(n) = 1 + a(n - A001045(A130249(n))). [This formula uses a simple greedy algorithm.]

A352320 Pell-Niven numbers: numbers that are divisible by the sum of the digits in their minimal (or greedy) representation in terms of the Pell numbers (A317204).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 15, 18, 20, 24, 28, 29, 30, 33, 34, 36, 39, 40, 42, 44, 48, 50, 58, 60, 63, 64, 68, 70, 72, 82, 84, 87, 88, 90, 92, 96, 110, 111, 112, 115, 116, 120, 125, 126, 135, 140, 141, 144, 155, 164, 165, 168, 169, 170, 174, 180, 183, 184, 186
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A265744(k) | k.
All the positive Pell numbers (A000129) are terms.

Examples

			6 is a term since its minimal Pell representation, A317204(6) = 101, has A265744(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[200], q]

A352321 Numbers k such that k and k+1 are both Pell-Niven numbers (A352320).

Original entry on oeis.org

1, 4, 5, 9, 14, 28, 29, 33, 39, 63, 87, 110, 111, 115, 125, 140, 164, 168, 169, 183, 255, 275, 308, 338, 410, 444, 483, 507, 564, 579, 584, 704, 791, 984, 985, 999, 1004, 1024, 1025, 1115, 1134, 1154, 1164, 1211, 1265, 1308, 1323, 1351, 1395, 1415, 1424, 1491
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

All the odd-indexed Pell numbers (A001653) are terms.

Examples

			4 is a term since 4 and 5 are both Pell-Niven numbers: the minimal Pell representation of 4, A317204(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, and the minimal Pell representation of 5, A317204(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[1500], q[#] && q[#+1] &]

A352322 Starts of runs of 3 consecutive Pell-Niven numbers (A352320).

Original entry on oeis.org

4, 28, 110, 168, 984, 1024, 3123, 3514, 5740, 6783, 6923, 8584, 12664, 16744, 18160, 19670, 23190, 23470, 24030, 34503, 34643, 36304, 40384, 45880, 47390, 50910, 51190, 51750, 57607, 61640, 68104, 73600, 78403, 78630, 78910, 79470, 86674, 89360, 95824, 101320
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Conjecture: There are no runs of 4 consecutive Pell-Niven numbers (checked up to 2*10^8).

Examples

			4 is a term since 4, 5 and 6 are all Pell-Niven numbers: the minimal Pell representation of 4, A317204(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, the minimal Pell representation of 5, A317204(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1, and the minimal Pell representation of 6, A317204(6) = 101, has the sum of digits 1+0+1 = 2 and 6 is divisible by 2.
		

Crossrefs

A182190 \ {0} is a subsequence.
Subsequence of A352320 and A352321.

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellNivenQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[Total[3^(s - 1)], 3]]]; seq[count_, nConsec_] := Module[{pn = pellNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ pn, c++; AppendTo[s, k - nConsec]]; pn = Join[Rest[pn], {pellNivenQ[k]}]; k++]; s]; seq[30, 3]

A276328 Digit sum when n is expressed in greedy A001563-base (A276326).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 5, 6, 7, 8, 6, 7, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 30 2016

Keywords

Comments

a(n) is the number of terms of A001563 needed to sum to n using the greedy algorithm.
This seems to give also the minimal number of terms of A001563 that sum to n (checked empirically up to n=3265920), but it would be nice to know for sure whether this holds for all n.

Examples

			For n=1, the largest term of A001563 <= 1 is A001563(1) = 1, thus a(1) = 1.
For n=2, the largest term of A001563 <= 2 is A001563(1) = 1, thus a(2) = 1 + a(2-1) = 2.
For n=18, the largest term of A001563 <= 18 is A001563(3) = 18, thus a(18) = 1.
For n=20, the largest term of A001563 <= 20 is A001563(3) = 18, thus a(20) = 1 + a(20-18) = 3.
For n=36, the largest term of A001563 <= 36 is A001563(3) = 18, thus a(36) = 1 + a(18) = 2.
		

Crossrefs

Cf. A276091 (gives all n for which a(n) = A276337(n)).
Cf. also A007895, A034968, A265744, A265745 for similar sequences.

Programs

  • Mathematica
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], (# #!) &[# - i]]], {i, 0, # - 1}] &@NestWhile[# + 1 &, 0, (# #!) &[# + 1] <= n &]; Rest[a][[All, 1]]]; {0}~Join~Table[Total@ f@ n, {n, 120}] (* Michael De Vlieger, Aug 31 2016 *)

Formula

a(0) = 0; for n >= 1, a(n) = 1 + a(n-A258199(n)).
a(0) = 0; for n >= 1, a(n) = A276333(n) + a(A276335(n)).
Other identities and observations. For all n >= 0:
a(A276091(n)) = A000120(n).
a(n) >= A276337(n).
It also seems that a(n) <= A276332(n) for all n.

A265404 a(n) = number of Spironacci numbers (A078510) needed to sum to n using the greedy algorithm.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Dec 16 2015

Keywords

Comments

a(0) = 0, because no numbers are needed to form an empty sum, which is zero.
First 2 occurs as a(17), first 3 at a(234), first 4 at a(3266).

Examples

			For n=17, the largest Spironacci number <= 17 is 16 (= A078510(22)). 17 - 16 = 1, which is A078510(1), thus 17 = A078510(22) + A078510(1), requiring only two such numbers for its sum, thus a(17) = 2.
For n=234, the largest Spironacci number <= 234 is 217 (= A078510(45)). 234-217 = 17 (whose decomposition is shown above), so 234 = A078510(45) + A078510(22) + A078510(1), thus a(234) = 3.
		

Crossrefs

Cf. A078510 (from its term a(7) onward gives also the positions of ones here).

A352340 a(n) is the sum of digits of n in the maximal Pell representation of n (A352339).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 5, 6, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 6, 7, 8, 4, 5, 5, 6, 4, 5, 6, 4, 5, 5, 6, 7, 5, 6, 6, 7, 5, 6, 7, 5, 6, 6, 7, 8, 6, 7, 7, 8, 9, 5, 6, 6, 7, 5, 6, 7, 5, 6, 6, 7, 8, 6, 7, 7, 8, 6
Offset: 0

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; a[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]

Formula

a(n) = A007953(A352339(n)).
a(n) >= A265744(n).

A265743 a(n) = number of terms of A005187 needed to sum to n using the greedy algorithm.

Original entry on oeis.org

0, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 3, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 17 2015

Keywords

Comments

a(0) = 0, because no numbers are needed to form an empty sum, which is zero.

Crossrefs

Formula

Other identities. For all n >= 1:
a(A005187(n)) = 1 and a(A055938(n)) > 1.

A352328 Nonnegative numbers that are the sum of distinct Pell numbers (A000129).

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 17, 18, 19, 20, 29, 30, 31, 32, 34, 35, 36, 37, 41, 42, 43, 44, 46, 47, 48, 49, 70, 71, 72, 73, 75, 76, 77, 78, 82, 83, 84, 85, 87, 88, 89, 90, 99, 100, 101, 102, 104, 105, 106, 107, 111, 112, 113, 114, 116, 117, 118
Offset: 0

Views

Author

Rémy Sigrist, Mar 12 2022

Keywords

Comments

This sequence is the complement of A352323.
Although this is a list, it has offset 0 for mathematical reasons: indeed, so, the binary expansion of n encodes the positive Pell numbers summing to a(n).
Every nonnegative integer is the sum of two (not necessarily distinct) terms of this sequence.

Examples

			For n = 42:
- 42 = 2^5 + 2^3 + 2^1,
- so a(42) = A000129(5+1) + A000129(3+1) + A000129(1+1) = 70 + 12 + 2 = 84.
		

Crossrefs

Programs

  • Mathematica
    With[{pell = LinearRecurrence[{2, 1}, {1, 2}, 7]}, Select[Union[Plus @@@ Subsets[pell]], # <= pell[[-1]] &]] (* Amiram Eldar, Mar 12 2022 *)
  • PARI
    a(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=([2, 1; 1, 0]^(k+1))[2, 1]); return (v) }

Formula

a(n) = Sum_{k >= 0} b_k * A000129(k+1) where Sum_{k >= 0} b_k * 2^k is the binary expansion of n.
A265744(a(n)) = A000120(n).
Showing 1-9 of 9 results.