cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265802 Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,4,1,1,1,...], where 1^n means n ones.

Original entry on oeis.org

1, 11, 19, 59, 145, 389, 1009, 2651, 6931, 18155, 47521, 124421, 325729, 852779, 2232595, 5845019, 15302449, 40062341, 104884561, 274591355, 718889491, 1882077131, 4927341889, 12899948549, 33772503745, 88417562699, 231480184339, 606022990331, 1586588786641
Offset: 0

Views

Author

Clark Kimberling, Jan 04 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[4,1,1,1,1,...] = (7 + sqrt(5))/2 has p(0,x) = 11 - 7 x + x^2, so a(0) = 1;
[1,4,1,1,1,...] = (29 - sqrt(5))/22 has p(1,x) = 19 - 29 x + 11 x^2, so a(1) = 11;
[1,1,4,1,1,...] = (67 + sqrt(5))/38 has p(2,x) = 59 - 67 x + 19 x^2, so a(2) = 19.
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> 6*Fibonacci(n+1)^2 - 5*(-1)^n); # G. C. Greubel, Dec 11 2019
  • Magma
    I:=[1,11,19,59]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
    
  • Maple
    with(combinat); seq(6*fibonacci(n+1)^2 - 5*(-1)^n, n=0..30); # G. C. Greubel, Dec 11 2019
  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {4}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
    Coefficient[t, x, 0] (* A265802 *)
    Coefficient[t, x, 1] (* A265803 *)
    Coefficient[t, x, 2] (* A236802 *)
    Join[{1}, LinearRecurrence[{2, 2, -1}, {11, 19, 59}, 30]] (* Vincenzo Librandi, Jan 06 2016 *)
    Table[6*Fibonacci[n+1]^2 - 5*(-1)^n, {n,0,30}] (* G. C. Greubel, Dec 11 2019 *)
  • PARI
    Vec((1+9*x-5*x^2)/(1-2*x-2*x^2+x^3) + O(x^30)) \\ Altug Alkan, Jan 04 2016
    
  • PARI
    vector(31, n, 6*fibonacci(n)^2 + 5*(-1)^n) \\ G. C. Greubel, Dec 11 2019
    
  • Sage
    [6*fibonacci(n+1)^2 - 5*(-1)^n for n in (0..30)] # G. C. Greubel, Dec 11 2019
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>3.
G.f.: (1 + 9*x - 5*x^2)/(1 - 2*x - 2*x^2 + x^3).
a(n) = (2^(-n)*(-13*(-2)^n + 3*(3-sqrt(5))^(1+n) + 3*(3+sqrt(5))^(1+n)))/5. - Colin Barker, Oct 20 2016
From Klaus Purath, Oct 28 2019: (Start)
(a(n-3) - a(n-2) - a(n-1) + a(n))/6 = Fibonacci(2*n-1).
(a(n-5) + a(n))/30 = Fibonacci(2*n-3).
(a(n) - a(n-4))/18 = Fibonacci(2*n-2). (End)
E.g.f.: (1/5)*exp(-x)*(-13 + exp(-(1/2)*(-5 + sqrt(5))*x)*(9 - 3*sqrt(5) + 3*(3 + sqrt(5))*exp(sqrt(5)*x))). - Stefano Spezia, Dec 09 2019
a(n) = 6*Fibonacci(n+1)^2 - 5*(-1)^n = (6*Lucas(2*n+2) - 13*(-1)^n)/5. - G. C. Greubel, Dec 11 2019