A265947 Total size of all principal order ideals in the poset of integer partitions of n with the refinement order.
1, 1, 3, 6, 14, 26, 55, 99, 192, 340, 619, 1063, 1873, 3129, 5308, 8718, 14385, 23116, 37346, 58949, 93294, 145131, 225623, 345833, 529976, 801675, 1211225, 1811558, 2703327, 3998289, 5901849, 8641160, 12623450, 18315370, 26503133, 38119289, 54691750, 78028166, 111041918, 157250528, 222105633
Offset: 0
Keywords
Examples
a(4) = 14 ordered pairs of partitions: {(4,4), (4,22), (4,31), (4,211), (4,1111), (22,22), (22,211), (22,1111), (31,31), (31,211), (31,1111), (211,211), (211,1111), (1111,1111)}.
Links
- Jon Mark Perry et al., Counting refinements of partitions, Mathoverflow, 2015.
Programs
-
Sage
def A265947(n): P = Posets.IntegerPartitions(n) return sum( len(P.order_ideal([p])) for p in P )
-
Sage
# Alternative: def A265947(n): return Posets.IntegerPartitions(n).relations_number() # F. Chapoton, Feb 26 2020
Comments