A266213 Square array A(n,r), the number of neighbors at a sharp Manhattan distance r in a finite n-hypercube lattice, read by upwards antidiagonals; A(n,r) = Sum_{k=0..min(n,r)} binomial(r-1,k-1)*binomial(n,k)* 2^k.
1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 8, 2, 0, 1, 8, 18, 12, 2, 0, 1, 10, 32, 38, 16, 2, 0, 1, 12, 50, 88, 66, 20, 2, 0, 1, 14, 72, 170, 192, 102, 24, 2, 0, 1, 16, 98, 292, 450, 360, 146, 28, 2, 0, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 0
Offset: 0
Examples
The array A(n, k) begins: n \ k 0 1 2 3 4 5 6 7 8 9 --------------------------------------------------------- 0: 1 0 0 0 0 0 0 0 0 0 1: 1 2 2 2 2 2 2 2 2 2 2: 1 4 8 12 16 20 24 28 32 36 3: 1 6 18 38 66 102 146 198 258 326 4: 1 8 32 88 192 360 608 952 1408 1992 5: 1 10 50 170 450 1002 1970 3530 5890 9290 6: 1 12 72 292 912 2364 5336 10836 20256 35436 7: 1 14 98 462 1666 4942 12642 28814 59906 115598 8: 1 16 128 688 2816 9424 27008 68464 157184 332688 9: 1 18 162 978 4482 16722 53154 148626 374274 864146 ... For instance, in a 5-hypercube lattice there are 170 nodes situated at a Manhattan distance of 3 for a chosen node. The triangle T(m, r) begins: m\r 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 0 2: 1 2 0 3: 1 4 2 0 4: 1 6 8 2 0 5: 1 8 18 12 2 0 6: 1 10 32 38 16 2 0 7: 1 12 50 88 66 20 2 0 8: 1 14 72 170 192 102 24 2 0 9: 1 16 98 292 450 360 146 28 2 0 10: 1 18 128 462 912 1002 608 198 32 2 0 ... Formatted by _Wolfdieter Lang_, Jan 31 2016
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5150
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Sect. 2.3.
- Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870 [cs.DM], 2016.
- D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
Crossrefs
Programs
-
Maple
# Prints the array by rows. gf := n -> ((1 + x)/(1 - x))^n: ser := n -> series(gf(n), x, 40): seq(lprint(seq(coeff(ser(n), x, k), k=0..6)), n=0..9); # Peter Luschny, Mar 20 2020
-
Mathematica
Table[Sum[Binomial[r - 1, k - 1] Binomial[n - r, k] 2^k, {k, 0, Min[n - r, r]}], {n, 0, 10}, {r, 0, n}] // Flatten (* Michael De Vlieger, Dec 24 2015 *)
-
Python
from sympy import binomial def T(n, r): if r==0: return 1 return sum(binomial(r - 1, k - 1) * binomial(n - r, k) * 2**k for k in range(min(n - r, r) + 1)) for n in range(11): print([T(n, r) for r in range(n + 1)]) # Indranil Ghosh, May 23 2017
Formula
A(n, 0)=1, n>=0, A(0, r)=0, r>0.
A(n, r) = A(n, r-1) + A(n-1, r-1) + A(n-1, r).
A(n, r) = Sum_{k=0..min(n,r)} binomial(r-1,k-1)*binomial(n,k)*2^k.
Triangle T(m, r) = A(m-r, r), n >= 0, 0 <= r <= n, otherwise 0. - Wolfdieter Lang, Jan 31 2016
A(n, k) = [x^k] ((1 + x)/(1 - x))^n. - Ilya Gutkovskiy, May 23 2017
Comments