cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266371 G.f. = b(4)*b(6)/(x^8+x^6-x^5-x^3+x^2-2*x+1), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 10, 21, 40, 74, 135, 244, 438, 782, 1394, 2484, 4425, 7880, 14028, 24969, 44442, 79102, 140792, 250588, 446002, 793801, 1412820, 2514562, 4475459, 7965488, 14177086, 25232574, 44909290, 79930188, 142260869, 253197876, 450645100, 802064421, 1427525430
Offset: 0

Views

Author

Alois P. Heinz, Dec 28 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_10 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(4)*b(6)/(x^8+x^6-x^5-x^3+x^2-2*x+1))); // Bruno Berselli, Dec 29 2015
  • Maple
    gf:= b(4)*b(6)/(x^8+x^6-x^5-x^3+x^2-2*x+1):
    b:= k->(1-x^k)/(1-x):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..40);
  • Mathematica
    b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[4] b[6]/(x^8 + x^6 - x^5 - x^3 + x^2 - 2 x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)
    LinearRecurrence[{2,-1,1,0,1,-1,0,-1},{1,4,10,21,40,74,135,244,438},40] (* Harvey P. Dale, Nov 06 2017 *)