A266513 Number of undirected cycles in a triangular grid graph, n vertices on each side.
0, 1, 11, 110, 2402, 128967, 16767653, 5436906668, 4406952731948, 8819634719356421, 43329348004927734247, 522235268182347360718818, 15436131339319739257518081878, 1117847654274955574635482276231683, 198163274851163063009517020867737770265
Offset: 1
Keywords
Examples
Of the 11 cycles in the triangular grid with 3 vertices per side, 4 have length 3, 3 have length 4, 3 have length 5 and 1 has length 6. 4 basic cycle shapes on a(3): o / \ o o---o o---o o o / \ / / / \ / \ o---o o---o o---o---o o---o---o
Links
- Ed Wynn, Table of n, a(n) for n = 1..17
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
Programs
-
Python
# Using graphillion from graphillion import GraphSet def make_n_triangular_grid_graph(n): s = 1 grids = [] for i in range(n + 1, 1, -1): for j in range(i - 1): a, b, c = s + j, s + j + 1, s + i + j grids.extend([(a, b), (a, c), (b, c)]) s += i return grids def A266513(n): if n == 1: return 0 universe = make_n_triangular_grid_graph(n - 1) GraphSet.set_universe(universe) cycles = GraphSet.cycles() return cycles.len() print([A266513(n) for n in range(1, 12)]) # Seiichi Manyama, Nov 30 2020