cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A305402 A number triangle T(n,k) read by rows for 0<=k<=n, related to the Taylor expansion of f(u, p) = (1/2)*(1+1/(sqrt(1-u^2)))*exp(p*sqrt(1-u^2)).

Original entry on oeis.org

1, 1, -2, 3, -4, 2, 15, -18, 9, -2, 105, -120, 60, -16, 2, 945, -1050, 525, -150, 25, -2, 10395, -11340, 5670, -1680, 315, -36, 2, 135135, -145530, 72765, -22050, 4410, -588, 49, -2, 2027025, -2162160, 1081080, -332640, 69300, -10080, 1008, -64, 2
Offset: 0

Views

Author

Johannes W. Meijer, May 31 2018

Keywords

Comments

The function f(u, p) = (1/2)*(1+1/(sqrt(1-u^2))) * exp(p*sqrt(1-u^2)) was found while studying the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld theories of diffraction, see the Meijer link.
The Taylor expansion of f(u, p) leads to the number triangle T(n, k), see the example section.
Normalization of the triangle terms, dividing the T(n, k) by T(n-k, 0), leads to A084534.
The row sums equal A003436, n >= 2, respectively A231622, n >= 1.

Examples

			The first few terms of the Taylor expansion of f(u; p) are:
f(u, p) = exp(p) * (1 + (1-2*p) * u^2/4 + (3-4*p+2*p^2) * u^4/16 + (15-18*p+9*p^2-2*p^3) * u^6/96 + (105-120*p+60*p^2-16*p^3+2*p^4) * u^8/768 + ... )
The first few rows of the T(n, k) triangle are:
n=0:     1
n=1:     1,     -2
n=2:     3,     -4,    2
n=3:    15,    -18,    9,    -2
n=4:   105,   -120,   60,   -16,   2
n=5:   945,  -1050,  525,  -150,  25,  -2
n=6: 10395, -11340, 5670, -1680, 315, -36, 2
		

References

  • J. W. Goodman, Introduction to Fourier Optics, 1996.
  • A. Papoulis, Systems and Transforms with Applications in Optics, 1968.

Crossrefs

Cf. Related to the left hand columns: A001147, A001193, A261065.
Cf. Related to the right hand columns: A280560, A162395, A006011, A040977, A053347, A054334, A266561.

Programs

  • Magma
    [[n le 0 select 1 else (-1)^k*2^(k-n+1)*Factorial(2*n-k-1)*Binomial(n, k)/Factorial(n-1): k in [0..n]]: n in [1..10]]; // G. C. Greubel, Nov 08 2018
  • Maple
    T := proc(n, k): if n=0 then 1 else (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!) fi: end: seq(seq(T(n, k), k=0..n), n=0..8);
  • Mathematica
    Table[If[n==0 && k==0,1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!)], {n, 0, 10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    T(n,k) = {if(n==0, 1, (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!))}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 08 2018
    

Formula

T(n, k) = (-1)^k*2^(k-n+1)*n*(2*n-k-1)!/(k!*(n-k)!), n > 0 and 0 <= k <= n, T(0, 0) = 1.
T(n, k) = (-1)^k*A001147(n-k)*A084534(n, k), n >= 0 and 0 <= k <= n.
T(n, k) = 2^(2*(k-n)+1)*A001147(n-k)*A127674(n, n-k), n > 0 and 0 <= k <= n, T(0, 0) = 1.
T(n, k) = (-1)^k*(A001497(n, k) + A132062(n, k)), n >= 1, T(0,0) = 1.
Showing 1-1 of 1 results.