A266583
Smallest prime starting a symmetric n-tuple of consecutive primes of the smallest span (=A266676(n)).
Original entry on oeis.org
2, 2, 3, 5, 18713, 5, 12003179, 17, 1480028129, 13, 1542186111157, 41280160361347, 660287401247633, 10421030292115097, 3112462738414697093, 996689250471604163, 258406392900394343851, 824871967574850703732309, 9425346484752129657862217, 824871967574850703732303
Offset: 1
A266585
Smallest m such that prime(m) starts a symmetric n-tuple of consecutive primes of the smallest span (=A266676(n)).
Original entry on oeis.org
1, 1, 2, 3, 2136, 3, 788244, 7, 73780392, 6, 57067140928, 1361665032086, 19953429852608, 290660101635794, 74896929428416952, 24660071077535201, 5620182896687887031
Offset: 1
A266511
Minimal difference between the smallest and largest of n consecutive large primes that form a symmetric n-tuplet as permitted by divisibility considerations.
Original entry on oeis.org
0, 2, 12, 8, 36, 16, 60, 26, 84, 34, 132, 46, 168, 56, 180, 74, 240, 82, 252, 94, 324, 106, 372, 118, 420, 134, 432, 142, 492, 146, 540, 158, 600, 166, 648, 178, 660, 194, 720, 202, 780, 214, 816, 226, 840, 254, 912, 262, 1020, 278
Offset: 1
For n=3, any shortest symmetric n-tuplet has the form (p, p+6, p+12) and thus a(3)=12.
From _Jon E. Schoenfield_, Jan 05 2016: (Start)
For each n-tuplet (p(1), ..., p(n)) with odd n, let m be its middle prime, i.e., m = p((n+1)/2). Then, since (by symmetry) (p(k) + p(n+1-k))/2 = m for all k = 1..n, we can define the n-tuplet by m and its vector of differences d(j) = m - p(j) for j = 1..(n-1)/2. In other words, given m and d(j) for j = 1..(n-1)/2, the (n-1)/2 primes below m are given by p(j) = m - d(j), and the (n-1)/2 primes above m are given by p(n+1-j) = m + d(j); the difference p(n) - p(1) is thus (m + d(1)) - (m - d(1)) = 2*d(1).
For example, one symmetric 7-tuplet of consecutive primes is (12003179, 12003191, 12003197, 12003209, 12003221, 12003227, 12003239), which can be written as (m-30, m-18, m-12, m, m+12, m+18, m+30) where m=12003209; here we have d(1)=30, d(2)=18, d(3)=12. Among all symmetric 7-tuplets of consecutive primes that satisfy divisibility considerations, the minimal value of d(1) is, in fact, 30, so a(7) = 2*30 = 60.
For n = 3, 5, ..., 29, the lexicographically first vector (d(1), d(2), ..., d((n-1)/2)) permitted by divisibility considerations is as follows:
n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--+-------------------------------------------------------
3| 6
5| 18 12
7| 30 18 12
9| 42 30 18 12
11| 66 60 36 24 6
13| 84 66 60 36 24 6
15| 90 84 66 60 36 24 6
17|120 108 90 78 60 48 42 18
19|126 120 114 96 84 54 36 30 6
21|162 150 132 120 108 102 78 48 42 18
23|186 180 150 144 126 96 84 66 60 54 30
25|210 186 180 150 144 126 96 84 66 60 54 30
27|216 210 204 180 126 120 114 96 84 54 36 30 6
29|246 216 210 204 186 174 144 126 90 84 66 60 24 6
(End)
a(15) and a(17)-a(18) from Jaroslaw Wroblewski
a(19), a(21), a(23), a(25), a(27), a(29) from
Jon E. Schoenfield, Jan 02 2016, Jan 05 2016
Showing 1-3 of 3 results.
Comments