A266695 Number of acyclic orientations of the Turán graph T(n,2).
1, 1, 2, 4, 14, 46, 230, 1066, 6902, 41506, 329462, 2441314, 22934774, 202229266, 2193664790, 22447207906, 276054834902, 3216941445106, 44222780245622, 578333776748674, 8787513806478134, 127464417117501586, 2121181056663291350, 33800841048945424546
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..475
- Beáta Bényi and Peter Hajnal, Combinatorics of poly-Bernoulli numbers, arXiv:1510.05765 [math.CO], 2015; Studia Scientiarum Mathematicarum Hungarica, Vol. 52, No. 4 (2015), 537-558, DOI:10.1556/012.2015.52.4.1325.
- P. J. Cameron, C. A. Glass, and R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Wikipedia, Turán graph
Crossrefs
Programs
-
Maple
a:= n-> (p-> add(Stirling2(n-p+1, i+1)*Stirling2(p+1, i+1)* i!^2, i=0..p))(iquo(n, 2)): seq(a(n), n=0..25);
-
Mathematica
a[n_] := With[{q=Quotient[n, 2]}, Sum[StirlingS2[n-q+1, i+1] StirlingS2[ q+1, i+1] i!^2, {i, 0, q}]]; Array[a, 24, 0] (* Jean-François Alcover, Nov 06 2018 *)
Formula
a(n) = Sum_{i=0..floor(n/2)} i!^2 * Stirling2(ceiling(n/2)+1,i+1) * Stirling2(floor(n/2)+1,i+1).
a(n) = A099594(floor(n/2),ceiling(n/2)).
a(n) = Sum_{k=0..n} abs(A266972(n,k)).
a(n) ~ n! / (sqrt(1-log(2)) * 2^n * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 18 2017
Comments