cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266733 a(n) = 21*binomial(n+6,7).

Original entry on oeis.org

0, 21, 168, 756, 2520, 6930, 16632, 36036, 72072, 135135, 240240, 408408, 668304, 1058148, 1627920, 2441880, 3581424, 5148297, 7268184, 10094700, 13813800, 18648630, 24864840, 32776380, 42751800, 55221075, 70682976, 89713008, 112971936, 141214920, 175301280
Offset: 0

Views

Author

Alan Shore and N. J. A. Sloane, Jan 06 2016

Keywords

Comments

Total number of pips on a set of hexominoes (6-celled linear dominoes) with up to n pips in each cell.

Crossrefs

Row 6 of array in A129533.

Programs

  • Mathematica
    Table[21 Binomial[n+6,7],{n,0,40}] (* Harvey P. Dale, Jan 13 2021 *)
  • PARI
    a(n) = (n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n))/240 \\ Colin Barker, Jan 08 2016
    
  • PARI
    concat(0, Vec(21*x/(1-x)^8 + O(x^40))) \\ Colin Barker, Jan 08 2016

Formula

a(n) = 21*A000580(n+6).
From Colin Barker, Jan 08 2016: (Start)
a(n) = n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)/240.
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8) for n>7.
G.f.: 21*x / (1-x)^8.
(End)