A266769 Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)).
1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 38, 45, 57, 66, 81, 93, 111, 126, 148, 166, 192, 214, 244, 270, 305, 335, 375, 410, 455, 495, 546, 591, 648, 699, 762, 819, 889, 952, 1029, 1099, 1183, 1260, 1352, 1436, 1536, 1628, 1736, 1836, 1953, 2061
Offset: 0
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-2,-1,2,1,-1).
Crossrefs
Programs
-
Magma
I:=[1,1,3,4,7,9,14,17]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-3)-2*Self(n-4)-Self(n-5)+2*Self(n-6)+Self(n-7)-Self(n-8): n in [1..60]]; // Vincenzo Librandi, Jan 11 2016
-
Mathematica
CoefficientList[Series[1/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 50}], x] (* JungHwan Min, Jan 10 2016 *) LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {1, 1, 3, 4, 7, 9, 14, 17}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
-
PARI
Vec(1/((1-x)*(1-x^2)^2*(1-x^3)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
-
PARI
{a(n) = (9*(n+4)*(-1)^n + 2*n^3 + 24*n^2 + 87*n + 157) \ 144}; /* Michael Somos, Jun 26 2017 */
Formula
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) for n>7. - Vincenzo Librandi, Jan 11 2016
a(n) = -a(-8-n) for all n in Z. - Michael Somos, Jun 26 2017
Comments