cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A265762 Coefficient of x in minimal polynomial of the continued fraction [1^n,2,1,1,1,...], where 1^n means n ones.

Original entry on oeis.org

-3, -5, -15, -37, -99, -257, -675, -1765, -4623, -12101, -31683, -82945, -217155, -568517, -1488399, -3896677, -10201635, -26708225, -69923043, -183060901, -479259663, -1254718085, -3284894595, -8599965697, -22515002499, -58945041797, -154320122895
Offset: 0

Views

Author

Clark Kimberling, Jan 04 2016

Keywords

Comments

In the following guide to related sequences, d(n), e(n), f(n) represent the coefficients in the minimal polynomial written as d(n)*x^2 + e(n)*x + f(n), except, in some cases, for initial terms. All of these sequences (eventually) satisfy the linear recurrence relation a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
continued fractions d(n) e(n) f(n)
[1^n,2,1,1,1,...] A236428 A265762 A236428
[1^n,3,1,1,1,...] A236428 A265762 A236428
[1^n,4,1,1,1,...] A265802 A265803 A265802
[1^n,5,1,1,1,...] A265804 A265805 A265804
[1^n,1/2,1,1,1,...] A266699 A266700 A266699
[1^n,1/3,1,1,1,...] A266701 A266702 A266701
[1^n,2/3,1,1,1,...] A266703 A266704 A266703
[1^n,sqrt(5),1,1,1,...] A266705 A266706 A266705
[1^n,tau,1,1,1,...] A266707 A266708 A266707
[2,1^n,2,1,1,1,...] A236428 A266709 A236428
The following forms of continued fractions have minimal polynomials of degree 4 and, after initial terms, satisfy the following linear recurrence relation:
a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5).
[1^n,sqrt(2),1,1,1,...]: A266710, A266711, A266712, A266713, A266710
[1^n,sqrt(3),1,1,1,...]: A266799, A266800, A266801, A266802, A266799
[1^n,sqrt(6),1,1,1,...]: A266804, A266805, A266806, A266807, A277804
Continued fractions [1^n,2^(1/3),1,1,1,...] have minimal polynomials of degree 6. The coefficient sequences are linearly recurrenct with signature {13, 104, -260, -260, 104, 13, -1, 0, 0}; see A267078-A267083.
Continued fractions [1^n,sqrt(2)+sqrt(3),1,1,1,...] have minimal polynomials of degree 8. The coefficient sequences are linearly recurrenct with signature {13, 104, -260, -260, 104, 13, -1}; see A266803, A266808, A267061-A267066.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[2,1,1,1,1,...] = (3 + sqrt(5))/2 has p(0,x) = x^2 - 3x + 1, so a(0) = -3;
[1,2,1,1,1,...] = (5 - sqrt(5))/2 has p(1,x) = x^2 - 5x + 5, so a(1) = -5;
[1,1,2,1,1,...] = (15 + sqrt(5))/10 has p(2,x) = 5x^2 - 15x + 11, so a(2) = -15.
		

Crossrefs

Programs

  • Magma
    I:=[-3,-5,-15]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 05 2016
  • Mathematica
    Program 1:
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
    Coefficient[t, x, 0] (* A236428 *)
    Coefficient[t, x, 1] (* A265762 *)
    Coefficient[t, x, 2] (* A236428 *)
    Program 2:
    LinearRecurrence[{2, 2, -1}, {-3, -5, -15}, 50] (* Vincenzo Librandi, Jan 05 2016 *)
  • PARI
    Vec((-3+x+x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 04 2016
    

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (-3 + x + x^2)/(1 - 2 x - 2 x^2 + x^3).
a(n) = (-1)*(2^(-n)*(3*(-2)^n+2*((3-sqrt(5))^(1+n)+(3+sqrt(5))^(1+n))))/5. - Colin Barker, Sep 27 2016

A266808 Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

-168, -560, -101124, -3288624, -180132168, -7998247028, -384048485640, -17892957477264, -843263161727364, -39567408316416848, -1859687400468342888, -87350263553726629620, -4103880417768964672104, -192790045902230868971504, -9057117701582885083841028
Offset: 0

Views

Author

Clark Kimberling, Jan 10 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -168.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -560;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -101124.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0];  (* A266803 *)
    Coefficient[t, x, 1];  (* A266808 *)
    Coefficient[t, x, 2];  (* A267061 *)
    Coefficient[t, x, 3];  (* A267062 *)
    Coefficient[t, x, 4];  (* A267063 *)
    Coefficient[t, x, 5];  (* A267064 *)
    Coefficient[t, x, 6];  (* A267065 *)
    Coefficient[t, x, 7];  (* A267066 *)
    Coefficient[t, x, 8];  (* A266803 *)

Formula

a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: -((4 (-42 + 1288 x + 9467 x^2 - 57564 x^3 - 198636 x^4 + 39086 x^5 - 5774 x^6 - 48 x^7 + 3 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 2376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9)).

A267061 Coefficient of x^2 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

-50, 2498, 173262, 7783550, 376636138, 17527857350, 826628182158, 38778106729442, 1822757247598510, 85612705715717438, 4022299792573538250, 188956642021519970918, 8877044611408850508622, 417030260830076184423170, 19591578937460413027671438
Offset: 0

Views

Author

Clark Kimberling, Jan 10 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -168.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -560;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -101124.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0];  (* A266803 *)
    Coefficient[t, x, 1];  (* A266808 *)
    Coefficient[t, x, 2];  (* A267061 *)
    Coefficient[t, x, 3];  (* A267062 *)
    Coefficient[t, x, 4];  (* A267063 *)
    Coefficient[t, x, 5];  (* A267064 *)
    Coefficient[t, x, 6];  (* A267065 *)
    Coefficient[t, x, 7];  (* A267066 *)
    Coefficient[t, x, 8];  (* A266803 *)

Formula

a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: -((2 (-25 + 2099 x + 62015 x^2 - 61490 x^3 - 369606 x^4 + 208474 x^5 - 53705 x^6 - x^7 + 19 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9)).

A267066 Coefficient of x^6 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

4, -560, -952, -303372, -8139896, -481544336, -20771606140, -1008539866512, -46789454179352, -2208680436593036, -103571099363469976, -4869042962273734320, -228680251217985528572, -10744200847316967694832, -504729054922920767654776
Offset: 0

Views

Author

Clark Kimberling, Jan 10 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x)  = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 4.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -560;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -952.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0];  (* A266803 *)
    Coefficient[t, x, 1];  (* A266808 *)
    Coefficient[t, x, 2];  (* A267061 *)
    Coefficient[t, x, 3];  (* A267062 *)
    Coefficient[t, x, 4];  (* A267063 *)
    Coefficient[t, x, 5];  (* A267064 *)
    Coefficient[t, x, 6];  (* A267065 *)
    Coefficient[t, x, 7];  (* A267066 *)
    Coefficient[t, x, 8];  (* A266803 *)

Formula

a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: -((4 (1 - 174 x + 3808 x^2 + 36850 x^3 + 76256 x^4 + 105360 x^5 - 8095 x^6 - 1822 x^7 + 36 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9)).

A267062 Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

212, -5760, -165852, -10501476, -449827456, -21948311748, -1016699956620, -48023357086272, -2251419462422716, -105852417560435076, -4971310326775823808, -233572686675369390180, -10972461323000994899692, -515480788238950647507456, -24216468853316695676874396
Offset: 0

Views

Author

Clark Kimberling, Jan 10 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x)  = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 212.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -5760;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -165852.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0];  (* A266803 *)
    Coefficient[t, x, 1];  (* A266808 *)
    Coefficient[t, x, 2];  (* A267061 *)
    Coefficient[t, x, 3];  (* A267062 *)
    Coefficient[t, x, 4];  (* A267063 *)
    Coefficient[t, x, 5];  (* A267064 *)
    Coefficient[t, x, 6];  (* A267065 *)
    Coefficient[t, x, 7];  (* A267066 *)
    Coefficient[t, x, 8];  (* A266803 *)

Formula

a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: (4 (-53 + 3242 x + 30345 x^2 - 58506 x^3 - 383152 x^4 - 61754 x^5 + 46551 x^6 - 1122 x^7 + 9 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9).

A267063 Coefficient of x^4 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

47, 7547, 96847, 8834047, 335645147, 17176306847, 781541264047, 37170460359547, 1738056704580047, 81798124546203647, 3840142385820445147, 180452111090491814047, 8476561791232835731247, 398233155957829357831547, 18708208945112842389197647
Offset: 0

Views

Author

Clark Kimberling, Jan 10 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x)  = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 47.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = 7547;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = 96847.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0];  (* A266803 *)
    Coefficient[t, x, 1];  (* A266808 *)
    Coefficient[t, x, 2];  (* A267061 *)
    Coefficient[t, x, 3];  (* A267062 *)
    Coefficient[t, x, 4];  (* A267063 *)
    Coefficient[t, x, 5];  (* A267064 *)
    Coefficient[t, x, 6];  (* A267065 *)
    Coefficient[t, x, 7];  (* A267066 *)
    Coefficient[t, x, 8];  (* A266803 *)

Formula

a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: (-47 - 5949 x + 193309 x^2 - 370818 x^3 - 1746090 x^4 + 850782 x^5 + 32909 x^6 - 15549 x^7 + 353 x^8)/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9).

A267064 Coefficient of x^5 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

-68, -5760, -35252, -4744764, -160222784, -8602304988, -384492157220, -18412926914112, -858719581400084, -40454410268348124, -1898470063828865408, -89224033424689993980, -4190977987082560730372, -196898460771438377224704, -9249826380311085293230964
Offset: 0

Views

Author

Clark Kimberling, Jan 10 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x)  = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -68.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -5760;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -35252.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0];  (* A266803 *)
    Coefficient[t, x, 1];  (* A266808 *)
    Coefficient[t, x, 2];  (* A267061 *)
    Coefficient[t, x, 3];  (* A267062 *)
    Coefficient[t, x, 4];  (* A267063 *)
    Coefficient[t, x, 5];  (* A267064 *)
    Coefficient[t, x, 6];  (* A267065 *)
    Coefficient[t, x, 7];  (* A267066 *)
    Coefficient[t, x, 8];  (* A266803 *)

Formula

a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: (4 (17 + 862 x - 52285 x^2 - 62714 x^3 + 326152 x^4 + 254390 x^5 - 38255 x^6 - 3838 x^7 + 111 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9).

A267065 Coefficient of x^6 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.

Original entry on oeis.org

-18, 2498, 7790, 1588998, 47783370, 2692503902, 118222343438, 5700687414690, 265166547527598, 12504559841719910, 586597482595321322, 27572856062170808478, 1295063443722512524590, 60845329039209613792898, 2858347113718106912615150, 134283053266053897759020742
Offset: 0

Views

Author

Clark Kimberling, Jan 10 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x)  = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -18.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = 2498;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = 7790.
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
    Coefficient[t, x, 0];  (* A266803 *)
    Coefficient[t, x, 1];  (* A266808 *)
    Coefficient[t, x, 2];  (* A267061 *)
    Coefficient[t, x, 3];  (* A267062 *)
    Coefficient[t, x, 4];  (* A267063 *)
    Coefficient[t, x, 5];  (* A267064 *)
    Coefficient[t, x, 6];  (* A267065 *)
    Coefficient[t, x, 7];  (* A267066 *)
    Coefficient[t, x, 8];  (* A266803 *)

Formula

a(n) = 34*a(n-1) + 714*a(n-2) - 4641*a(n-3) - 12376*a(n-4) + 12376*a(n-5) + 4641*a(n-6) - 714*a(n-7) - 34*a(n-8) + a(n-9).
G.f.: -((2 (-9 + 1555 x - 32145 x^2 - 271486 x^3 - 217086 x^4 + 308078 x^5 + 819 x^6 - 1961 x^7 + 15 x^8))/(-1 + 34 x + 714 x^2 - 4641 x^3 - 12376 x^4 + 12376 x^5 + 4641 x^6 - 714 x^7 - 34 x^8 + x^9)).
Showing 1-8 of 8 results.