A265762
Coefficient of x in minimal polynomial of the continued fraction [1^n,2,1,1,1,...], where 1^n means n ones.
Original entry on oeis.org
-3, -5, -15, -37, -99, -257, -675, -1765, -4623, -12101, -31683, -82945, -217155, -568517, -1488399, -3896677, -10201635, -26708225, -69923043, -183060901, -479259663, -1254718085, -3284894595, -8599965697, -22515002499, -58945041797, -154320122895
Offset: 0
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[2,1,1,1,1,...] = (3 + sqrt(5))/2 has p(0,x) = x^2 - 3x + 1, so a(0) = -3;
[1,2,1,1,1,...] = (5 - sqrt(5))/2 has p(1,x) = x^2 - 5x + 5, so a(1) = -5;
[1,1,2,1,1,...] = (15 + sqrt(5))/10 has p(2,x) = 5x^2 - 15x + 11, so a(2) = -15.
-
I:=[-3,-5,-15]; [n le 3 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 05 2016
-
Program 1:
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {2}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
Coefficient[t, x, 0] (* A236428 *)
Coefficient[t, x, 1] (* A265762 *)
Coefficient[t, x, 2] (* A236428 *)
Program 2:
LinearRecurrence[{2, 2, -1}, {-3, -5, -15}, 50] (* Vincenzo Librandi, Jan 05 2016 *)
-
Vec((-3+x+x^2)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 04 2016
A266803
Coefficient of x^0 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
49, 49, 25281, 606409, 37676521, 1596669889, 78061422609, 3612062087761, 170677159358209, 8000461380881641, 376169445225673929, 17666248458032362369, 830040053693500377841, 38992376127586237335409, 1831844657768331755159361, 86057114020320867143580169
Offset: 0
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 49.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = 49;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = 25281.
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
A266808
Coefficient of x in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-168, -560, -101124, -3288624, -180132168, -7998247028, -384048485640, -17892957477264, -843263161727364, -39567408316416848, -1859687400468342888, -87350263553726629620, -4103880417768964672104, -192790045902230868971504, -9057117701582885083841028
Offset: 0
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -168.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -560;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -101124.
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
A267066
Coefficient of x^6 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
4, -560, -952, -303372, -8139896, -481544336, -20771606140, -1008539866512, -46789454179352, -2208680436593036, -103571099363469976, -4869042962273734320, -228680251217985528572, -10744200847316967694832, -504729054922920767654776
Offset: 0
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 4.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -560;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -952.
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
A267062
Coefficient of x^3 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
212, -5760, -165852, -10501476, -449827456, -21948311748, -1016699956620, -48023357086272, -2251419462422716, -105852417560435076, -4971310326775823808, -233572686675369390180, -10972461323000994899692, -515480788238950647507456, -24216468853316695676874396
Offset: 0
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 212.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -5760;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -165852.
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
A267063
Coefficient of x^4 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
47, 7547, 96847, 8834047, 335645147, 17176306847, 781541264047, 37170460359547, 1738056704580047, 81798124546203647, 3840142385820445147, 180452111090491814047, 8476561791232835731247, 398233155957829357831547, 18708208945112842389197647
Offset: 0
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = 47.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = 7547;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = 96847.
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
A267064
Coefficient of x^5 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-68, -5760, -35252, -4744764, -160222784, -8602304988, -384492157220, -18412926914112, -858719581400084, -40454410268348124, -1898470063828865408, -89224033424689993980, -4190977987082560730372, -196898460771438377224704, -9249826380311085293230964
Offset: 0
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -68.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = -5760;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = -35252.
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
A267065
Coefficient of x^6 in the minimal polynomial of the continued fraction [1^n,sqrt(2)+sqrt(3),1,1,...], where 1^n means n ones.
Original entry on oeis.org
-18, 2498, 7790, 1588998, 47783370, 2692503902, 118222343438, 5700687414690, 265166547527598, 12504559841719910, 586597482595321322, 27572856062170808478, 1295063443722512524590, 60845329039209613792898, 2858347113718106912615150, 134283053266053897759020742
Offset: 0
Let u = sqrt(2) and v = sqrt(3), and let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[u+v,1,1,1,...] has p(0,x) = 49 - 168 x - 50 x^2 + 212 x^3 + 47 x^4 - 68 x^5 - 18 x^6 + 4 x^7 + x^8, so that a(0) = -18.
[1,u+v,1,1,1,...] has p(1,x) = 49 - 560 x + 2498 x^2 - 5760 x^3 + 7547 x^4 - 5760 x^5 + 2498 x^6 - 560 x^7 + 49 x^8, so that a(1) = 2498;
[1,1,u+v,1,1,1...] has p(2,x) = 25281 - 101124 x + 173262 x^2 - 165852 x^3 + 96847 x^4 - 35252 x^5 + 7790 x^6 - 952 x^7 + 49 x^8, so that a(2) = 7790.
- G. C. Greubel, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (34, 714, -4641, -12376, 12376, 4641, -714, -34, 1).
-
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {Sqrt[2] + Sqrt[3]}, {{1}}];
f[n_] := FromContinuedFraction[t[n]];
t = Table[MinimalPolynomial[f[n], x], {n, 0, 40}];
Coefficient[t, x, 0]; (* A266803 *)
Coefficient[t, x, 1]; (* A266808 *)
Coefficient[t, x, 2]; (* A267061 *)
Coefficient[t, x, 3]; (* A267062 *)
Coefficient[t, x, 4]; (* A267063 *)
Coefficient[t, x, 5]; (* A267064 *)
Coefficient[t, x, 6]; (* A267065 *)
Coefficient[t, x, 7]; (* A267066 *)
Coefficient[t, x, 8]; (* A266803 *)
Showing 1-8 of 8 results.
Comments