cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266845 Primes p such that p+-2 and p+-4 are semiprimes.

Original entry on oeis.org

53, 89, 449, 683, 1259, 4283, 6803, 11789, 12781, 13553, 16561, 18593, 18899, 20287, 29303, 35099, 36217, 37619, 52163, 54181, 64763, 65213, 67103, 103769, 115831, 116009, 125551, 126541, 147997, 154043, 155161, 155609, 166013, 173699, 181943, 188911, 190261, 196613
Offset: 1

Views

Author

Zak Seidov, Jan 04 2016

Keywords

Examples

			a(1)=53 because 53 - 2 = 51 = 3*17, 53 + 2 = 55 = 5*11.
		

Crossrefs

Subsequence of A063643.

Programs

  • Magma
    IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesInInterval(3,2*10^5)| IsSemiprime(p+2) and IsSemiprime(p+4)and IsSemiprime(p-2) and IsSemiprime(p-4)]; // Vincenzo Librandi, Jan 10 2016
  • Maple
    filter:= proc(n) andmap(t -> numtheory:-bigomega(t)=2, [n-4,n-2,n+2,n+4]) end proc:
    select(filter, [seq(ithprime(i),i=1..20000)]); # Robert Israel, Aug 11 2019
  • Mathematica
    Select[Prime@ Range@ 18000, AllTrue[# + {-4, -2, 2, 4}, PrimeOmega@ # == 2 &] &] (* Michael De Vlieger, Jan 09 2016, Version 10 *)
  • PARI
    lista(nn) = {forprime(p=5, nn, if (bigomega(p-4)==2 && bigomega(p+4)==2 && bigomega(p-2)==2 && bigomega(p+2)==2, print1(p, ", ")); ); } \\ Michel Marcus, Jan 10 2016