A266883 Numbers of the form m*(4*m+1)+1, where m = 0,-1,1,-2,2,-3,3,...
1, 4, 6, 15, 19, 34, 40, 61, 69, 96, 106, 139, 151, 190, 204, 249, 265, 316, 334, 391, 411, 474, 496, 565, 589, 664, 690, 771, 799, 886, 916, 1009, 1041, 1140, 1174, 1279, 1315, 1426, 1464, 1581, 1621, 1744, 1786, 1915, 1959, 2094, 2140, 2281, 2329, 2476, 2526
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[n*(n+1)+1-((2*n+1)*(-1)^n-1)/4: n in [0..50]];
-
Magma
I:=[1,4,6,15,19]; [n le 5 select I[n] else Self(n-1) + 2*Self(n-2) -2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jan 06 2016
-
Mathematica
Table[n (n + 1) + 1 - ((2 n + 1) (-1)^n - 1)/4, {n, 0, 50}] LinearRecurrence[{1, 2, -2, -1, 1}, {1, 4, 6, 15, 19}, 60] (* Vincenzo Librandi, Jan 06 2016 *)
-
PARI
vector(50, n, n--; n*(n+1)+1-((2*n+1)*(-1)^n-1)/4)
-
PARI
Vec((1+3*x+3*x^3+x^4)/((1+x)^2*(1-x)^3) + O(x^100)) \\ Altug Alkan, Jan 06 2016
-
Python
[n*(n+1)+1-((2*n+1)*(-1)**n-1)/4 for n in range(60)]
-
Sage
[n*(n+1)+1-((2*n+1)*(-1)^n-1)/4 for n in range(50)]
Comments