A151541
Number of 2-sided triangular strip polyedges with n cells.
Original entry on oeis.org
1, 3, 8, 32, 123, 523, 2201, 9443, 40341, 172649, 736926, 3141607, 13367012, 56790498, 240919918, 1020753475, 4319803799, 18262494912, 77134873774, 325518862387, 1372679840360, 5784417772262
Offset: 1
Asymptotically approaches (1/24)*
A001334(n) for increasing n.
A306178
Number of unrooted self-avoiding walks with n steps that can make turns from the set 0, +-Pi/4, +-Pi/2, +-3*Pi/4.
Original entry on oeis.org
1, 4, 15, 86, 492, 2992, 18172, 110643, 672267, 4069122, 24578785, 147972210, 889332713, 5331980703, 31924424199
Offset: 1
A306175
Number of unrooted self-avoiding walks with n steps that can make turns from the set +-Pi/5, +-3*Pi/5.
Original entry on oeis.org
1, 2, 6, 19, 66, 229, 831, 2991, 10859, 39173, 141631, 510079, 1835583, 6586932, 23614821, 84492315, 302014619, 1077860479, 3843695976, 13690026688
Offset: 1
A306177
Number of unrooted self-avoiding walks with n steps that can make turns from the set +-Pi/7, +-3*Pi/7, +-5*Pi/7.
Original entry on oeis.org
1, 3, 11, 55, 275, 1444, 7609, 40220, 212051, 1114206, 5840287, 30521627, 159166728, 828130291, 4301636648
Offset: 1
A306179
Number of unrooted self-avoiding walks with n steps that can make turns from the set +-Pi/9, +-3*Pi/9, +-5*Pi/9, +-7*Pi/9.
Original entry on oeis.org
1, 4, 19, 128, 861, 6051, 42475, 297993, 2081607, 14485077, 100475175, 694838429, 4793805002
Offset: 1
A306180
Number of unrooted self-avoiding walks with n steps that can make turns from the set 0, +-Pi/5, +-2*Pi/5, +-3*Pi/5, +-4*Pi/5.
Original entry on oeis.org
1, 5, 23, 169, 1233, 9551
Offset: 1
A306181
Number of unrooted self-avoiding walks with n steps that can make turns from the set +-Pi/11, +-3*Pi/11, +-5*Pi/11, +-7*Pi/11, +-9*Pi/11.
Original entry on oeis.org
1, 5, 28, 235, 1970, 17201, 149420, 1295637, 11178026, 96047288, 822418731, 7020762655
Offset: 1
A306182
Number of unrooted self-avoiding walks with n steps that can make turns from the set 0, +-Pi/6, +-2*Pi/6, +-3*Pi/6, +-4*Pi/6, +-5*Pi/6.
Original entry on oeis.org
1, 6, 33, 306, 2765, 26290, 247737, 2332965, 21856232, 204019196, 1897940592, 17606864337
Offset: 1
A346123
Numbers m such that no self-avoiding walk of length m + 1 on the honeycomb net fits into the smallest circle that can enclose a walk of length m.
Original entry on oeis.org
1, 2, 6, 7, 10, 12, 13, 14, 15, 16, 23, 24, 25, 27, 28, 30, 33, 36, 37, 38, 42, 43, 46, 53, 54, 55, 56, 58, 59, 62
Offset: 1
Illustration of initial terms:
%%% %%% %%%
% %
% %
% % % /%
% % % a(2) = 2 / %
%__________% % / %
% L = 1 % % / %
% D = 1 % % L = 2, D = 1.732 / %
% % % / %
% / Pi/3 %
a(1) = 1 %-------------- . . . .%
% %
% %
%%% %%% %%%
.
%%% %%%% %%% %%% %%%% %%%
% % % %
% % % \ %
% % % \ %
% % % \ %
% % % \ %
% % % \ %
%. L = 3, D = 2.00 .% %. L = 4, D = 2.00 .%
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% ---------------- % % ---------------- %
%%% %%% %%% %%% %%% %%%
.
%%% %%% %%% %%% %%% %%%
% ______________ % % ______________ %
% \ % % / \ %
% \ % % / \ %
% \ % % / \ %
% \ % % / a(3) = 6 \ %
% \ % % / \ %
%. L = 5, D = 2.00 .% %. L = 6, D = 2.00 .%
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% \ / % % \ / %
% ---------------- % % ---------------- %
%%% %%%% %%% %%% %%%% %%%
.
The path of minimum diameter of length 7 requires an enclosing circle of D = 3.055, which is greater than the previous minimum diameter of D = 2.00 corresponding to a(3) = 6. No path of length 8 exists that fits into a circle of D = 3.055, thus a(4) = 7.
See link for illustrations of terms corresponding to diameters D <= 9.85.
Cf.
A346124-
A346132 similar to this sequence with other sets of turning angles.
Showing 1-9 of 9 results.
Comments