A267067 Primes p such that mu(p-2) = 1; that is, p-2 is squarefree and has an even number of prime factors, where mu is the Moebius function (A008683).
3, 17, 23, 37, 41, 53, 59, 67, 71, 79, 89, 97, 113, 131, 157, 163, 179, 211, 223, 239, 251, 269, 293, 307, 311, 331, 337, 367, 373, 379, 383, 397, 409, 419, 439, 449, 487, 491, 499, 503, 521, 547, 593, 599, 613, 631, 673, 683, 691, 701, 709, 719, 733, 739
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Moebius Function
Programs
-
Magma
[n: n in [3..1000] | IsPrime(n) and MoebiusMu(n-2) eq 1];
-
Maple
select(p -> isprime(p) and numtheory:-mobius(p-2)=1, [seq(i,i=3..1000,2)]); # Robert Israel, Jan 10 2016
-
Mathematica
Select[Prime[Range[200]], MoebiusMu[# - 2] == 1 &]
-
PARI
isok(p) = isprime(p) && (p>2) && (moebius(p-2)==1); \\ Michel Marcus, Mar 08 2023
Comments