A267116 Bitwise-OR of the exponents of primes in the prime factorization of n.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 3, 3, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 3
Offset: 1
Keywords
Examples
For n = 4 = 2^2, bitwise-OR of 2 alone is 2, thus a(4) = 2. For n = 6 = 2^1 * 3^1, when we take a bitwise-or of 1 and 1, we get 1, thus a(6) = 1. For n = 24 = 2^3 * 3^1, bitwise-or of 3 and 1 ("11" and "01" in binary) gives "11", thus a(24) = 3. For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-or of 1, 1, 1 and 1 gives 1, thus a(210) = 1. For n = 720 = 2^4 * 3^2 * 5^1, bitwise-or of 4, 2 and 1 ("100", "10" and "1" in binary) gives 7 ("111" in binary), thus a(720) = 7.
Links
Crossrefs
Cf. A000290 (indices of even numbers).
Cf. A000037 (indices of odd numbers).
Nonunit terms of A005117, A062503, A113849 give the positions of ones, twos, fours respectively in this sequence.
Programs
-
Maple
read("transforms"): A267116 := proc(n) local a,e ; a := 0 ; for e in ifactors(n)[2] do a := ORnos(a,op(2,e)) ; end do: a ; end proc: # R. J. Mathar, Feb 16 2021
-
Mathematica
{0}~Join~Rest@ Array[BitOr @@ Map[Last, FactorInteger@ #] &, 120] (* Michael De Vlieger, Feb 04 2016 *)
-
PARI
a(n)=my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitor(b, f[k,2]);); b; \\ Michel Marcus, Feb 05 2016
-
PARI
a(n)=if(n>1, fold(bitor, factor(n)[,2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
-
Python
from functools import reduce from operator import or_ from sympy import factorint def A267116(n): return reduce(or_,factorint(n).values(),0) # Chai Wah Wu, Aug 31 2022
Formula
Other identities and observations. For all n >= 1:
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k).
a(A003961(n)) = a(n).
a(n^2) = 2*a(n).
(End)