A267263 Number of nonzero digits in representation of n in primorial base.
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2
Offset: 0
Examples
a(3) = 2 because 3 written in primorial base is 11 with 2 nonzero digits.
Links
Crossrefs
Programs
-
Maple
a:= proc(n) local m, p, r; m, p, r:= n, 2, 0; while m>0 do r:= r+`if`(irem(m, p, 'm')>0, 1, 0); p:= nextprime(p) od; r end: seq(a(n), n=0..100); # Alois P. Heinz, Jan 15 2016
-
Mathematica
Table[Length[IntegerDigits[n, MixedRadix@ Prime@ Reverse@ Range@ PrimePi@ n] /. 0 -> Nothing], {n, 0, 120}] (* Michael De Vlieger, Jan 12 2016, Version 10.2 *) f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Count[f@ n, d_ /; d > 0], {n, 0, 73}] (* Michael De Vlieger, Aug 29 2016 *)
-
PARI
cnz(n) = my(d = digits(n)); sum(k=1, #d, d[k]!=0); A049345(n, p=2) = if(n
A049345(n\p, nextprime(p+1))*10 + n%p) a(n) = cnz(A049345(n)); \\ Michel Marcus, Jan 12 2016
-
PARI
a(n)=my(s); forprime(p=2,, if(n%p, s++, if(n==0, return(s))); n\=p) \\ Charles R Greathouse IV, Nov 17 2016